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Abstract—In networks with unstable links the connection be-
tween the sender and the receiver may be cut before the entire mes-
sage has been transmitted. Quantization of the message into blocks
before its transmission, enables message fragments consisting of
one or more such blocks to be transmitted successfully, even if the
connection time is too short for transmitting the entire message.
But fragmentation may also reduce the chances of delivering
the entire message to its destination, due to lost or misrouted
fragments.

In this paper we (1) formulate the problem of in-time trans-
mission of fragmented messages in disrupted networks; and (2)
develop methods to analytically estimate the mean transmission
time of fragmented message within a basic system model for the
case of transmission over a single disrupted link.

I. INTRODUCTION

In Delay-tolerant Networks (DTNs) created by opportunistic
interactions among mobile nodes, communication links will go
on and off frequently and the achievable transmission rate will
vary. The transmission capacity depends on the quality of the
wireless channel during a contact and the mobility patterns that
determine the contact durations and inter-contact times between
the nodes. Given that transmission capacity during a contact
is limited and that incompletely transmitted messages are lost,
short contact durations may hinder message passing and thus
limit the connectivity of the DTN. Message fragmentation is
one way to improve connectivity through increased utilization
of contact durations [1].

Theoretical studies of fragmentation in packet networks that
have veen motivated by IP include [2], [3] and [4]. In IP
networks, any node along the path is allowed to fragment
packets which are then re-assembled at the destination. How-
ever, IP fragmentation is discouraged in practice, among other
reasons, due to the increase in packet loss probability [5]. To
avoid fragmentation, senders may dynamically determine the
maximum transmission unit (MTU) for a given path, by probing
with different packet sizes and setting the don’t fragment flag
in the IP header. It also occurs that senders choose an MTU,
e.g., based upon conservative expectations on the operating
environment and the application demands.

Path MTU discovery relies on the communication path being
stable for some time beyond the MTU measurement and on
that measurement to conclude within a reasonably short period
of time. It will not work in networks with large variation of
communication delays, variable link availability and changing
paths between sender and receiver as we may find in Delay-
tolerant Networks. This variability may also make it tricky to
estimate a suitable MTU.

The Delay-tolerant Networking architecture [6] and protocol
[7] define two types of fragmentation for DTNs: pro-active and
reactive. In the former, the source node for this hop divides
application data into blocks and sends each block in a separate
fragment (message). In the latter, the data is split only when
the transmission between two nodes on any link of the message
path is interrupted; yielding one fragment with data that made
it to the receiver and one containing the yet-to-be-transmitted
remainder at the sender. In both cases the fragmented data is
re-assembled only at its destination.

Authentication and integrity protection of fragments with
methods in [8], [9], [10] implies that quantization of data,
i.e. its division into blocks, must be done proactively, before
its transmission over the first link of the message path. This is
because the secret key needed for signatures over message data
(or its parts) is assumed to be known only by the originating
node. In both fragmentation approaches, it is the responsibility
of the originating node to perform the necessary data quan-
tization. Splitting the message data into separate fragments
according to the quantization boundaries may happen anywhere
along the message path. Thus, for the quantization choice,
there is virtually no difference between pro-active and reactive
fragmentation—with the small exception that the originating
node, when fragmenting, could change the quantization after
partial transmission, a possibility that we do not consider fur-
ther in this paper.

If all fragments need to reach the destination for successful
message reassembly, and any message has a non-zero loss
probability p (due to dropping or mis-routing), then the payload
delivery probability reduces from 1 − p without fragmentation
to (1−p)k when using k fragments. This motivates minimizing
the number of fragments created and hence large quantization
blocks.

The work on [1] confirmed the above: several fragmentation
strategies in DTNs were evaluated by simulations, finding
for a set of scenarios that reactive fragmentation with data
quantization at the message source improves performance. It
became evident that a model of fragmented transmission over
disrupted links would help to design fragmentation strategies
and interpret simulation results. This paper presents elements
of such model.

We consider a node A intending to send a message of a given
size m to another node B via a mobile DTN. A message will
be tagged with a time-to-live (TTL) indicating the deadline
of its usefulness to B. The communicating nodes (A, B and
intermediate nodes) of the mobile DTN encounter each other



opportunistically, the contact durations and inter-contact times
following mobility-dependent distributions. The resulting con-
tact patterns define the “connectedness” of the network with
respect to message size m. Node A can choose to transmit
m in a single packet, thus requiring sufficiently long contact
durations for m to fit. Or A may split m into blocks of size f ,
thus allowing transmission of message fragments consisting of
one or more such blocks during shorter contacts.1 f may vary
between messages, and we shall call it “message fragmentation
unit”.

How can A reduce the number of fragments by setting f
large, while still allowing in-time delivery of the message to
B? We make two main assumptions to make this problem
trackable. First, we focus on a single link: the more complicated
multi-hop and multi-path cases cannot be unpacked without
understanding the single-hop one.2 Second, we assume that
disruptions in the (single) link are the only obstacle to in-time
delivery. Other obstacles, like additional queuing delays, could
be added once the effect of link disruptions is understood.

The main contribution of this paper are methods to estimate
the mean delivery time of a message of size m through a dis-
rupted link in DTN, as a function of fragmentation unit size f ,
and the locally measured contact pattern characteristics. From
that estimate a network node can locally determine an optimal
f that will still guarantee in-time delivery of the message.

We emphasize that our calculations of the mean delivery
times are done within a simplified system model; they are thus
approximations to the real transmission times. We have used
those theoretical calculations to understand better the funda-
mentals of fragmented message transmission, and as a source
of approximate estimates in fragmentation algorithms. The
algorithms and their comparative performance evaluation in
simulated environments will be described in another paper [13].

A contribution of independent interest from the fragmenta-
tion problem is the closed form expression, given in Eq. (V.20),
for the mean of the minimum number of throws with a n-
faceted die such that their sum is at least x ≥ 0.

We present our system model in section II and formulate
the fragmentation problem in section III. Section IV contains
additional definitions and notation. Ways to estimate the mean
transmission time are given in section V. The paper ends with
summary and future work topics in section VI.

Part of the theoretical results in this paper and preliminary
experimental results were published in our technical report [14].

II. BASIC MODEL OF TRANSMISSION OVER DISRUPTED
LINK

Network node A sends messages over an intermittent com-
munication link to node B. The observations by A of link
state changes, and the acknowledgments by B of successful
transmissions do not incur a delay. The link speed V during its

1Note that the last piece of the message may be smaller than f .
2Note also that some DTN routing protocols use direct transmission from A

to B: Direct Delivery [11] and, for the last hop, Spray-and-Wait [12].

ON state is constant. This arrangement is depicted in Figure 1.3

Fig. 1. System model.

The transitions from ON to OFF state may occur due to
nodes mobility, link capacity being temporary alloted for other
purpose, or unrecoverable transmission errors.

The durations of ON and OFF epochs are positive random
variablesX and Y , respectively. We denote by FX(·) and FY (·)
the distributions, and by dFX(·) and dFY (·) the densities of
those random variables. We will assume that X and Y have
finite mean and variance.4

We assume in our model that the distributions of X and Y
are stationary. We also assume in our model that X (and Y ) are
independent and identically distributed (i.i.d.).

We divide all message sizes by V , measuring message sizes
in seconds. For instance, if the link speed is 1 Kb/s, we say that
size of a 1 Kb message is one second. We denote the size of
A’s message by m, and by x the size of same message after
quantization and addition of extra headers. Thus x is a function
of m, the message fragmentation unit f , and of the header size
h: x = x(m, f, h).

If the link fails during transmission, node A will attempt to
retransmit this message (fragment) during the next ON epoch.
We denote the number of ON epochs needed for successful
transmission of x seconds by n(x) and by N(x) the mean of
n(x): N(x) = E[n(x)]. The sending node always starts to
transmit (or retransmit) when the link changes state from OFF
to ON. The number of OFF epochs during successful transmis-
sion is n(x) − 1 by this assumption. Let random variable t(x)
be the time needed for successful transmission of x seconds.
We denote by T (x) the mean of t(x): T (x) = E[t(x)].

The mean transmission time T (x) is the sum of TX(x), the
mean of the total time spent in the ON state, and TY (x), the
mean of the total time spent in the OFF state after transmission
has started:

T (x) = TX(x) + TY (x). (II.1)

Note that since TX(x) does not depend on Y , the quantity
TX(x) will not change when OFF epochs are very brief. Thus,
the simplest system for studying experimentally the effects of
link disruptions and data quantization on transmission time is
the one in which Y → 0.

When f = 0, we assume that h = 0. In this case TX(x) is
at its theoretical lower bound of TX(x) = x: There is no waste

3We note that a similar model was used also in other studies of fragmentation
issues. (See [15] and [16] and the references therein.)

4A conjecture implying that in many cases E[Y ] > ∞ have been proposed
in [17], and then refuted in [18].



of transmission time due to quantization of the message into
indivisible blocks; and transmission time is wasted due to link
disruptions only.

We will assume that the sending node A has a lower bound
f0 on a packet size and an upper bound L > f0 on the total
transmission time t(x) of the message. Clearly, the message
may be transmitted in time only if L ≥ x. The values of f0
and L can be set by the sending node, based on the properties
of the link and, e.g., the validity time of the message that is
chosen by the sending application.

Our message transmission model is simple enough so that
within it we can compute the mean transmission time T (x)
and thus understand better the fundamentals of fragmented
message transmission over disrupted link. Naturally, T (x) so
computed is only an approximation to the transmission time
within more elaborate models, or in a real network. The model
transmission over disrupted link can be refined and elaborated,
e.g., by adding details of the physical radio channel (propaga-
tion delay, fading of the radio signal, and interference effects).
While our basic model neglects those, we believe that it still
captures something essential for understanding the delivery of
fragmented messages.

III. PROBLEM STATEMENT

If X is an ON epoch’s sample, such that X = kf + r, where
k is a non-negative integer, then node A can transfer k packets
of size f or a submessage of size kf within X . The remainder
r, which unused for transmission, decreases on the average as
f gets smaller. So, on the one hand, finer subdivision of the
message should reduce total transmission time over a single
link.

But on the other hand, if node B is not the end receiver
of A’s messages—i.e. in the multi-hop and multi-path cases,
then finer subdivision will increase the chance of losing that
message, e.g., due to a misrouted or dropped fragment [1].
Coarser subdivision (i.e. larger f ) may increase the chance of a
message reaching its destination.

Jelenković and Tan showed in [15] that the mean transmis-
sion time of unfragmented messages over a disrupted link may
become arbitrarily large in some cases, and introduced a frag-
mentation algorithm to mitigate this problem. Nair et al. study
in [16] the asymptotics of message transmission time; they also
show how to choose f so that, under certain restrictions on
the distribution of ON epochs, the mean transmission time of
a message is minimized.

In this paper, we investigate a related, but different problem:
We will assume that the cost of transmitting a message of
size m, typically increases with the number of fragments into
which that message may be split. Our target is to minimize this
cost, provided that the message transmission time t(x) does not
exceedL. Therefore, we seek the largest possible fragmentation
unit f for a given message size m and the constraint L on the
message transmission time.

The fragmentation question can be approached in two ways:
First, what is the largest f , for which inequality

T (x) ≤ L, (III.1)

is true? This is the problem of in-time delivery in the mean. Es-
timating T (x), given f and the contact pattern characteristics,
is needed in solving this problem.

Second, what is the largest f , for which inequality

P{t(x) ≤ L} > 1− ε (III.2)

is true? The lower bound 1 − ε on the probability of in-time
delivery could be, e.g., 0.95. This is the problem of in-time
delivery in probability.5

In this paper we will deal only with the problem of in-time
delivery in the mean.

IV. ADDITIONAL DEFINITIONS AND NOTATION

The values related to transmission duration, t(x), T (x),
n(x), and N(x), depend on the size f of transmitted packets.
Therefore, more accurate notation would be to use symbols
tf (x), Tf (x), nf (x) andNf (x), but we use the simpler notation
in the rest of this paper, because the intended f is clear from the
context.

When a message of size m is quantized into blocks of size f
its size grows due to headers and, e.g., possibly padding the last
piece of data so that its size is f . We denote by x the message
size after it has been so processed, and by h the size of the
header: 0 ≤ h ≤ f0. For f = 0, we set h = 0 and define
x = m in that case. For f ≥ f0, m = k(f − h) + r, where
k is a non-negative integer and 0 ≤ r < f − h. The quantized
message will contain k blocks of size f , where k = b m

f−hc
if f ≥ f0; its total size x depends on how the remainder r is
quantized.

As an example, the remaining part may be packaged into a
single block of size f :

x = kf + f. (IV.1)

This quantization simplifies analysis, but is unlikely in practice,
unless f = f0. In a more realistic example, the remaining part
will be packaged into a single block of size r + h:

x = kf + r + h. (IV.2)

We denote by j(x) the number of blocks in a message of size
x: j(x) = dx/fe. If the quantizing is according to Eq. (IV.1),
then the size of the last block is f ; if the quantizing is according
to Eq. (IV.2) then the size of the last block is r + h.

In most cases6 only the part fbX/fc of an ON epoch may be
used for transmission, unless f = 0: If f = 0, then the whole
of an ON epoch X may be used for transmission. We denote
this “useful” part by Xf :

Xf =

{
bXf cf if f > 0,

X if f = 0.
(IV.3)

5Our simple modeling of fragmentation penalties is not well-suited for an-
swering minimization questions, e.g., “What f minimizes t(x) with probability
1 − ε?” and “What f minimizes T (x)?” Therefore, we do not address these
minimization problems in this paper.

6Possible exceptions are the ON epochs in which the remainder r + h is
transmitted.



Assuming that all blocks (including the last one) are of equal
size f > 0, the distribution of Xf is:

P{Xf ≤ x} = P{X < (k + 1)f}
= FX((k + 1)f)− P{X = (k + 1)f},

(IV.4)

where kf ≤ x < (k+1)f , and k = 0, 1, 2, · · · ; 7 its probability
mass function is:

P{Xf = kf} =FX((k + 1)f)− P{X = (k + 1)f}
− (FX(kf)− P{X = kf}).

(IV.5)

We denote by Sk(X) the sum of k independent and identi-
cally distributed random variables Xi. For example, S0(X) is
zero, Sk(Y ) is the sum Y1 + Y2 + · · ·+ Yk, and Sk(Xf ) is the
sumXf,1+Xf,2+· · ·+Xf,k. The variable n(x) can be defined
in terms of Sk(Xf ): n(x) = min{k : Sk(Xf ) ≥ x}.

If k is large, then by the central limit theorem, Sk(Xf )
is distributed approximately normally with mean E[Xf ]k and
variance Var[Xf ]k. It can be shown that if x � E[Xf ], then
also n(x) is distributed approximately normally with mean
x/E[Xf ] and variance Var[Xf ]x/E[Xf ]3. (See [19], p. 61 for
an outline of a proof.)

But in scenarios where k is small, this result does not apply.
This motivates further investigations into the behavior of n(x).

Note also that since x depends on the header size h, all
functions of x depend also on the constant h.

V. ESTIMATING THE MEAN TRANSMISSION TIME

A. Elementary considerations

When f = 0 there is no waste of contact time due to data
quantization, and

TX(x) = x. (V.1)

Thus, TX(x) is at least x seconds; it depends on x and on the
probability mass function of Xf .

If a value of N(x) is given, then TX(x) can be approximated
as E[X] ·N(x). Suppose that the givenN(x) is exact. Since the
transmission of the entire message will be typically completed
somewhere inside the last ON epoch, i.e. before the last ON
epoch ends, that approximation overestimates TX(x) by at most
E[X]. (TX(x) can be estimated better in special cases. See
section V-E.)

Conversely, if a value of TX(x) is given, then N(x) can be
approximated as TX(x)/E[X]. (See section V-B below.)

The expression for TY (x) is

TY (x) = E[Y ] (N(x)− 1) . (V.2)

As mentioned in section II, the number of OFF epochs during
successful transmission is one less than the number of ON
epochs, due to our assumption that new message transmission
starts at the beginning of ON epoch.

The fact that TX(x) is at least x seconds, together with
Eq. (II.1) and (V.2) define the lower bound on T (x). A message

7Note that if FX is continuous at (k + 1)f , then dFX((k + 1)f) is finite.
Therefore, the term P{X = (k + 1)f} above, which equals to lim

∆x→0
∆x ·

dFX((k + 1)f), tends to zero and can be neglected.

whose uninterrupted transmission within a single ON epoch
will take x seconds cannot be transmitted over disrupted link
in less than N(x) ON epochs and N(x)− 1 OFF epochs on the
average:

T (x) ≥ x+ E[Y ](N(x)− 1). (V.3)

B. Direct approximation of TX(x) in the general case

A linear approximation for TX(x) can be derived by begin-
ning from Eq. (V.1); N(x) is then estimated as TX(x)/E[X]
and an approximate value of T (x) obtained from Eq. (V.2) and
(II.1):

An ON epoch that is less than f cannot be used for transmis-
sion; when the message is divided into fragments of size f , the
proportion of the total ON time Sn(x) = X1+X2 + · · ·+Xn(x)

that is used for transmitting data is approximately P{Xi ≥ f},
i.e. 1− FX(f) + P{X = f}. Therefore, TX(x) (which equals
x when f = 0), grows by a factor of 1/P{X ≥ f}.

If the last fragment of a message is less than f , it may be
transmitted in an ON epoch that is less than f : Xn(x) < f . But
as the number of fragments gets larger, the effect of an event
{Xn(x) < f} on TX(x) gets smaller. Thus, also in this case,
TX(x) grows by a factor of about 1/P{X ≥ f} compared to
when f = 0.

Based on the above, TX(x) can be estimated as

TX(x) ≈ x

P{X ≥ f}
. (V.4)

Dividing the estimate of TX(x) by the mean length of an ON
epoch, we obtain

N(x) ≈ x

E[X] P{X ≥ f}
. (V.5)

It should be noted that there are two systematic errors in
the above approximation which fortunately impact in opposite
directions. First, not all of the time of ON epochs longer than f
can be used for transmission; in the end of each epoch Xi there
is some remainder timeXi−Xf,i that is wasted. Neglecting this
wasted time leads towards a too high denominator in Eq. (V.4)
(and thus a too low estimate of TX(x)).

Second, P{Xi ≥ f} actually gives the proportion of the
number of ON epochs that may be used for transmission, not
the proportion of the time that may be used for transmission.
Since an ON epoch that may be used for transmission must be
at least f , it is longer than just an arbitrary Xi; the proportion
of the time that may be used for transmission is more than
P{Xi ≥ f}. This error leads towards a too low denominator
in Eq. (V.4) (and thus a too high estimate of TX(x)).

We discuss next how to decrease the effect of those system-
atic errors. The first error increases the amount of transmission
time in any “useful” ON epoch: Xi ≥ f , by an amount of
wasted time Xi − Xf,i ∈ [0, f). The exact amount added
depends of course on f and the distribution of X , but because
we deal with an approximation here, a good candidate for
reducing the systematic error is to substract f/2 from each
Xi ≥ f .

The second systematic error can be reduced as follows. The
probability that an ON epoch is “useful” is indeed P{Xi ≥ f};



and a typical Xi ≥ f is longer than a typical Xi by a factor
of E[X | X ≥ f ]/E[X]. These two values should now be
multiplied in order to get the proportion of the time that may
be used for transmitting data in the total time of all ON epochs.

If we now combine the two corrections then the corrective
multiplier to the term P{X ≥ f} is the ratio of E[X | X ≥
f ]−f/2 and E[X]. Thus, the slightly better approximations are

TX(x) ≈ x

P{X ≥ f} · E[X|X≥f ]−f/2
E[X]

(V.6)

and

N(x) ≈ x

P{X ≥ f}(E[X | X ≥ f ]− f/2)
. (V.7)

Let us illustrate the behavior of the corrective multiplier in
Eq. (V.6) with three different distributions of X .

First, when X is uniformly distributed in (0, 1), the condi-
tional expected value E[X | X ≥ f ] is (f + 1)/2 and the value
of TX(x) estimated with Eq. (6.6) is exactly the same as TX(x)
estimated with Eq. (V.4):

TX(x) ≈ x

(1− f) · (f+1)/2−f/2
1/2

=
x

1− f
=

x

P{X ≥ f}
.

(V.8)
Second, when X is exponentially distributed with parameter

λ, P{X ≥ x} = e−λx and E[X] = 1/λ. After being ON
for f seconds, the link will continue to be ON for another
1/λ seconds on the average, due to the memoryless property
of exponential distribution. Thus, E[X | X ≥ f ] = f + 1/λ
and

TX(x) ≈ x

e−λf f/2+1/λ
1/λ

=
x

e−λf (1 + λf
2 )
≤ x

P{X ≥ f}
.

(V.9)
Third, consider the distribution where FX(x) = x2, if

x ∈ [0, 1] and FX(x) = 0, otherwise. In this case E[X] = 2/3,
P{X ≥ f} = 1 − f2, and E [X | X ≥ f} = (2 + 2f +
2f2)/(3 + 3f).

It can be verified that the corrective multiplier:

E [X | X ≥ f ]− f/2)

E[X]
=

2+2f+2f2

3+3f − f
2

2/3
=

4 + f + f2

4 + 4f
,

(V.10)
monotonically decreases from 1 to 3/4, as f increases from 0
to 1. So, in this case, TX(x) estimated with Eq. (V.6) will be
more than or equal to TX(x) estimated with Eq. (V.4).

C. Computation of N(x) in the general case

The discrete renewal equation:

N(x) =
1 +

∑j(x)
k=1N(x− kf)P{Xf = kf}

1− P{Xf = 0}
, (V.11)

whereN(x) = 0, if x ≤ 0, provides a way for estimatingN(x)
recursively for any x ≥ 0. It can be derived based on Xf,1,
Xf,2, etc., being i.i.d.; e.g., by the following method from [20]:

The expectation of n(x) conditioned on the event “the suit-
able for transmission part of the first ON epoch equals kf”,
where k is some nonnegative integer, is:

E[n(x) | Xf = kf ] = 1 + E[n(x− kf)] = 1 +N(x− kf).

Multiplying both sides by the probability P{Xf = kf} of that
event and summing for all k ≥ 0, leads to:

N(x) =

∞∑
k=0

(1 +N(x− kf)) P{Xf = kf}

=

∞∑
k=0

P{Xf = kf}+

∞∑
k=0

N(x− kf)P{Xf = kf}

= 1 +N(x)P{Xf = 0}+

∞∑
k=1

N(x− kf)P{Xf = kf}.

Since N(x) = 0, if x ≤ 0, the upper limit of the sum on the
right hand side can be truncated to the number of fragments in
x: j(x); and Eq. (V.11) results after rearrangement of terms.

When x � E[X] and f > 0, it can be shown that N(x)
obeys the following asymptotic relation:

N(x)→ d · x
E[Xf ]

+
Var[Xf ]− E[Xf ]f + E[Xf ]2

2E[Xf ]2
, (V.12)

where d is the “period” of Xf . (This relation corresponds to
Eq. (12.2), p. 340, in [21].) The period d is a positive integer
derived from Xf taking its values from the sequence 0, df , 2df ,
3df , · · · . The period d = 1 if the range of X includes f . If
d > 1, then there will be periodic gaps between the values
of Xf , caused by the corresponding gaps in the values of X .
For example, if the range of X is restricted to (0, 0.9f ] and
[2.1f, 2.9f ], then Xf ∈ {0, 2f} and d = 2.
N(x) is a non-decreasing function of x when f is fixed.

Therefore, a value of N(x) computed assuming that the mes-
sage is quantized into j(x) fragments of equal size f , according
to Eq. (IV.1), provides an upper bound on N(x) in the case that
the last message part, that is less than f − h, is quantized into a
smaller packet.

Similarly, the value of N(x), computed assuming that the
message is quantized into j(x) − 1 fragments of equal size f ,
provides a lower bound on N(x) in the above case.8

D. Computation of N(x) in special cases

1) Case of f = 0: no quantization: The integral renewal
equation for the case f = 0 that follows, can be derived
similarly to the Eq. (V.11) above,

N(x) = 1 +

∫ x

y=0

N(x− y)dFX(y). (V.13)

8In section V-D non-recursive equations for N(x) are given for uniformly
and exponentially distributed X , again assuming that the message is quantized
into fragments of equal size. It can be verified that a tighter lower bound may
be obtained by replacing the integer j(x) = dx/fe with the fraction x/f in
those equations.



When x � E[X], it can be shown that N(x) obeys the
following asymptotic relation:

N(x)→ x

E[X]
+

Var[X] + E[X]2

2E[X]2
. (V.14)

(This relation corresponds to Eq. (3.1), p. 366, in [22].)
The linear form of (V.14) can be explained intuitively as

follows. When x � E[X], n(x) is large. Therefore, first, the
sum of the ON epochs that are needed to transmit a (large) mes-
sage is quite close to the size of that message: Sn(x)(X) ≈ x,
because the remainder after the end of transmission of the last
ON epoch, Xn(x), is insignificant compared to x. Second, the
many random fluctuations in Xi around its mean E[X], during
transmission of a single large message, cancel each other. This
results in that the mean difference between Sn(x)+1(X) and
Sn(x)(X) is E[X], which, in turn, implies that the mean growth
rate of n(X) as a function of Sn(x)(X) is 1/E[X].

2) Case of f = m + h: no fragmentation: When f = m +
h, i.e. there is no fragmentation and x = f , an ON epoch X
cannot be used for transmission if X < x. Setting j(x) = 1 in
Eq. (V.11) we obtain immediately:

N(x) =
1 +N(0)P{Xf = f}

1− P{Xf = 0}
=

1

P{X ≥ x}
. (V.15)

For example, if X is distributed uniformly between zero and
one, then FX(x) = x for 0 < x < 1, and is 1 for x ≥ 1. Thus,
by Eq. (V.15),

N(x) =

{
1

1−x if 0 < x < 1,

∞ if x ≥ 1.
(V.16)

3) Case of exponentially distributed X: It can be verified
that if FX(x) = 1− e−λx, then

N(x) = j(x)(eλf − 1) + 1. (V.17)

Taking the limit at f → 0 of N(x), we get

N(x) = λx+ 1. (V.18)

Eq. (V.17) can be derived as follows. By (IV.5), the proba-
bility P{Xf = kf} is (1 − p)kp, where p = 1 − e−λf : the
number of successfully transmitted blocks of size f within a
single ON epoch is distributed geometrically with parameter
p. Thus, the count of failures in transmitting a block before
successful transmission of j(x) blocks (in a sequence of ON
epochs) has a negative binomial distribution with parameters
j(x) and p. Its expectation j(x)p/(1 − p) equals to the mean
number of OFF epochs during a successful transmission of j(x)
blocks. Therefore, N(x) = j(x)p/(1− p) + 1.

4) Case of uniformly distributed X: We will give below an
expression for N(x) in two sub-cases. In both of them X ∼
U(0, 1) and the message is quantized into fragments of equal
size, according to Eq. (IV.1).

Sub-case of 1/2 < f < 1: In this case at most one fragment
may be transmitted within any ON epoch; a message requires
j(x) uninterrupted transmissions of f seconds each. Therefore,

N(x) = j(x)N(f) = j(x)/(1− f). (V.19)

Sub-case of f = 1/n, and n = 2, 3, · · · : In this case,

N(x) =

q∑
k=0

(−1)k
(

n

n− 1

)j(x)−kn
(j(x)− kn)k

k!(n− 1)k
, (V.20)

where N(x) = 0 if x ≤ 0, (x)k is the rising factorial x(x +
1) · · · (x+ k− 1), and q is the integer part of x: q = bxc. This
formula will be proved by induction on j(x) in Appendix B.
N(x) in this case is related to the mean of the minimum

number of throws with a n-faceted die such that their sum is
at least x. The distribution of the minimum number of throws
is given, e.g., in ex. 19, p. 285 of [21]. But the closed form
expression for the mean seems to be new; so far, we have not
found it in the literature.

As f gets smaller, the values of N(x) computed with
Eq. (V.20) approach from above those of N(x) with f = 0:

N(x) =

q∑
k=0

(−1)kex−k
(x− k)k

k!
. (V.21)

(Eq. (V.21) is given in [22] p. 385.)

E. Computation of TX(x) in special cases

In general, the mean of the total time spent in ON state
TX(x) can be approximated as E[X] ·N(x). We will see below
that under conditions that enforce transmission of at most one
fragment of size f per ON epoch, a better estimate of TX(x)
may be obtained.

1) Case of f = m+h: no fragmentation: We can get a better
estimate by noticing that in this case (i) the whole message
must be transmitted in x seconds during the last ON epoch and
that (ii) none of the n(x) − 1 ON epochs preceding successful
transmission may equal or exceed x. Therefore,

TX(x) = x+ (N(x)− 1)E[X | X < x]. (V.22)

For example, if 0 < x < 1 and X is distributed uniformly in
(0, 1], then inserting E[X | X < x] = x/2 and the expression
for N(x) from Eq. (V.16) into Eq. (V.22) we obtain

TX(x) = x+ (N(x)− 1)
x

2
=

1

2

(
1

1− x
− (1− x)

)
.

(V.23)

As another example, if X is distributed exponentially, then

E[X | X < x] =

∫ x
0
yλe−λydy

P{X < x}
=

1

λ
− x

eλx − 1
.

Inserting the above and the expression for N(x) from
Eq. (V.17) with j(x) set to 1 into Eq. (V.22) we obtain

TX(x) =
1

λ
(eλx − 1). (V.24)



2) Case of X ∼ U(0, 1) and 1/2 < f < 1: The value of
N(x) in this case is given by Eq. (V.19). The value of TX(x) is
given by

TX(x) =
1

2

(
j(x)

1− f
− (1− f)

)
. (V.25)

This equation can be derived from the more general one:

TX(x) = j(x)E[(X | X < f)](N(f)− 1)

+ (j(x)− 1)E[X | X ≥ f ] + f,
(V.26)

that is valid when the distribution of ON epochs FX(x) van-
ishes outside an interval [a, b], and f exceeds b/2. (Those condi-
tions enforce transmission of at most one fragment of size f per
ON epoch.) Eq. (V.26) can be constructed using the following
observations: (i) the mean length of the N(f − h) − 1 ON
epochs preceding successful transmission of a single fragment
is E[X | X < f ]; (ii) E[X | X ≥ f ] is the mean length of the
ON epoch during which f is successfully transmitted; and (iii)
the transmission ends after f seconds of Xn(x).

F. Summary of results on mean transmission time
The answer to the basic question “What is the smallest

message size that has to be fragmented to be delivered in-
time on the average?” can be computed in our model using the
combination of Eq. (II.1), (V.2), (V.15), and (V.22).

Intuitively, if the message fits into a “typical” contact time,
then fragmentation of that message is not necessary for its in-
time delivery; and if the message is much larger than a “typical”
contact time, then that message must be fragmented to be
delivered in-time. Those simple facts are confirmed by our the-
oretical calculations of the mean transmission time of messages
that have been quantized into blocks of size f . (Cf. Eq. (V.16)
and (V.20)).

We have also found that if f is held constant, then for large
messages the mean delivery time grows approximately linearly
with the message size (see Eq. (V.12)), while for smaller
messages that growth is non-linear. The speed of that growth
depends on the constant f : as f decreases, so does the speed,
until at f = 0 the mean transmission time approaches its
theoretical lower limit, where no transmission time is lost due
to quantization of data into discrete blocks; and link disruptions
are the only remaining obstacle to in-time delivery.

It is plain that if we keep the message size constant while
decreasing f , then the gross message size will increase due to
addition of extra headers. We have also found that even if we
neglect the effect of extra headers by setting h = 0, constant
independent of f , then the decrease in transmission time as
we decrease f is not necessarily monotonic: for some message
sizes, decreasing f may actually increase the transmission time
(see Appendix A).

For reference, we summarize methods for estimating the
mean transmission time in Table I. The leftmost column in
the summary contains the number of a section in which the
corresponding expression has been introduced.

In subtable on uniformly distributed X , formulae for X
uniformly distributed in (0, a], where a > 0, rather than in
(0, 1], are given.

VI. SUMMARY AND FUTURE WORK

In this paper we have investigated how to quantize a message
into blocks of size f before its transmission in networks with
unstable links. It is assumed that in-time delivery of a message
is what matters to applications, and that the cost of transmitting
a message grows with the number of pieces into which it is split.

Thus, we seek the largest f that will (if that is possible)
guarantee in-time delivery of a message. The guarantee can be
either in terms of in-time delivery in the mean, or in terms of
lower bound on the probability of in-time delivery. We deal
with the first of those subjects in this paper and the question
of how to compute the probability of in-time delivery from link
statistics for a given message size and f could be a topic of
furture work.

In this paper we have shown how to analytically estimate
the mean delivery time of fragmented message within a ba-
sic model of transmission over disrupted link. We use those
theoretical results to understand better the fundamentals of
fragmented message transmission (see §V-F), and as a source
of approximations in our fragmentation algorithms [13]. Es-
timating message transmission times within more refined and
elaborate models could be a topic of future work. Other topics
for future work include fragmentation in multi-link and multi-
path networks. Further studies could also consider the impact
that quantization of a message has on the in-time delivery of
subsequent (queued) messages.

In conclusion, there are inherent non-linear dependencies
(some obvious and some not, see §V-F) of transmission time of
a message that has been quantized into blocks of size f , on the
size of that message and on f . Those non-linear dependencies
make the design of fragmentation algorithms interesting and
challenging.
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§ f Results Notes

II
V-A

V-B

V-B
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2E[X]2 .

No quantization.
Renewal equation.
x→∞. See [22], p. 366,
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V-E
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N(x) = 1/P{X ≥ x},
TX(x) = x+ (N(x)− 1) E[X | X < x]. No fragmentation.

Summary for exponentially distributed X
§ f Results Notes

V-D3 f > 0 N(x) = j(x)(eλf − 1) + 1. j(x) = dx
f
e.

V-D3 f = 0 N(x) = λx+ 1. No quantization

V-D2
V-E1 f = x

N(x) = eλx,
TX(x) = 1

λ
(eλx − 1).

No fragmentation.

Summary for X uniformly distributed in [0, a]

§ f Results Notes

V-D4 f = a
n

,
n ≥ 2 N(x) =

∑q
k=0(−1)k

(
n
n−1

)j(x)−kn (j(x)−kn)k

k!(n−1)k
.

N(x) = 0 if x ≤ 0, q = bx/ac, j(x) = dx
f
e,

(x)k = x(x+ 1) · · · (x+ k − 1).

V-D4 f = 0 N(x) =
∑q
k=0(−1)kex−k (x−k)k

k!
. No quantization, see [22], p. 385.

V-D2
V-E1 f = x

N(x) = 1/(1− x/a),
TX(x) = 1

2

(
1

1−x/a − (1− x/a)
)
.
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V-D4
V-E2

a
2
< f < a

N(x) = j(x)/(1− f/a),
TX(x) = 1

2

(
j(x)

1−f/a − (1− f/a)
)

.
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j(x) = dx
f
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APPENDIX A
NON-MONOTONICITY OF TRANSMISSION TIME

If we neglect the effect of extra headers, and assume that the
gross size of transmitted data is a constant x independent of f ,
then t(x) will in general decrease as we decrease f . But even
under this assumption, the decrease in transmission time t(x) is
not necessarily monotonic.

We give a toy example to illustrate this. Assume that x = 30
and the first five ON epochs are 10, 7, 5, 11, and 10 seconds
with OFF epochs of 4 seconds in between them. We tabulate
below the values of t(x) for several f in this example:

f 2 3 4 5 6

t(x) 44 52 57 44 > 59

It would be an interesting combinatorial problem to charac-
terize the cases where t(x) decreases monotonically when f
decreases.

Also N(x) (and hence the mean transmission time T (x)), is
not necessarily monotonic in f , even if we neglect the effect
of extra headers. For example, if X is distributed uniformly in
[0,1], f = 1/k and x ≤ 1, then by Eq. (V.20):

N(x) = (k/(k − 1))j(x).

Assuming that x is slightly less than 1/2, e.g., 1/2−1/100, we
tabulate below the values of j(x) and N(x) for several f :

f 1/2 1/3 1/4 1/5 1/6 1/7

j(x) = dx/fe 1 2 2 3 3 4

N(x) 2 2.25 1.78 1.95 1.73 1.85
We see that a similar non-monotonicity phenomenon appears
again. However, the transmission time is monotonic in x when
the size of f is fixed in our model: as we increase message size
while keeping f fixed, the transmission time never gets lower.

The effect of data quantization described above implies that
even if T (x) could be estimated without error as a function of
f , the difference between the optimal f (i.e. the largest f such
that T (x) ≤ L), and f found by an algorithm that examines the
possible values of f with search step ∆, may exceed ∆.

APPENDIX B
N(x) IN THE DISCRETE UNIFORM CASE

In this section we provide an inductive proof for the
Eq. (V.20). Our proof uses the fact that a valid formula forN(x)
must also satisfy the recursion of Eq. (V.11).

Base case: Let us begin by denoting N(x) = uj when x =
jf (and thus j(x) = j). Because P{Xf = kf} = 1/n for
each k = 0, 1, · · · , n − 1 and is zero for other values of k, the
formula (V.11) becomes

uj =
1 + (uj−1 + uj−2 + · · ·+ uj−(n−1))

1
n

1− 1/n
, (B.1)

with uj = 0 if j ≤ 0. Next, the corresponding formula for uj−1
can be formally derived by change of indexes. The difference
between uj and uj−1 is

uj − uj−1 =
(uj−1 − uj−n) 1

n

1− 1/n
.

Moving uj−1 to the right hand side and simplifying gives

uj =
nuj−1 − uj−n

n− 1
. (B.2)

Now, uj−n = 0 if 0 < j ≤ n; for this range of j (B.2)
reduces to uj = (n/(n − 1))uj−1. Also, u1 = n/(n − 1)
by (B.1). Therefore, uj = (n/(n − 1))j if 0 < j ≤ n; and
since Eq. (V.20) agrees with these values when q = 0, we have
a starting point for our induction.

Inductive step: In order to make our subsequent derivations a
little bit simpler we first re-write (V.20) as

N(x) = uj = uqn+i =
q∑

k=0

(−1)k
(

n

n− 1

)(q−k)n+i
((q − k)n+ i)k

k!(n− 1)k
,

(B.3)

where x = (qn+ i)/n with 0 ≤ i < n.
Let us next assume that (B.3) is valid whenever j = qn + i

is replaced by a smaller value (inductive hypothesis) and we try
to prove that (B.3) is also true for the value j = qn+ i.

Now we have x = (qn+ i)/n where 0 ≤ i < n. Let us first
consider the case where 0 < i < n. Our strategy is to use both
the inductive hypothesis and the recurrence equation (B.2).



First, by applying the inductive hypothesis twice, we get
n

n− 1
uqn+i−1 =

q∑
k=0

(−1)k
(

n

n− 1

)(q−k)n+i
((q − k)n+ i− 1)k

k!(n− 1)k
,

(B.4)

and
u(q−1)n+i

n− 1
=

q−1∑
k=0

(−1)k
(

n

n− 1

)(q−1−k)n+i
((q − 1− k)n+ i)k

k!(n− 1)k+1
.

(B.5)

By replacing k with c−1 (i.e. k+ 1 = c) we can re-write the
last formula as

u(q−1)n+i

n− 1
=

q∑
c=1

(−1)c−1
(

n

n− 1

)(q−c)n+i
((q − c)n+ i)c−1

(c− 1)!(n− 1)c
.

Renaming the index c now by k and substituting to the
recurrence equation (B.2) we obtain

uqn+i =
nuqn+i−1 − u(q−1)n+i

n− 1

=

(
n

n− 1

)qn+i
+

q∑
k=1

(−1)k
(

n

n− 1

)(q−k)n+i

· α,

(B.6)

where

α =

(
((q − k)n+ i− 1)k

k!(n− 1)k
+

((q − k)n+ i)k−1

(k − 1)!(n− 1)k

)
.

The α multiplier can be further simplified, firstly by observ-
ing that

α =
((q − k)n+ i− 1)k + k((q − k)n+ i)k−1

k!(n− 1)k
.

Secondly, denoting (q − k)n + i by β, we can reduce the
numerator of α: (β − 1)k + kβk−1 = (β − 1 + k)βk−1 = βk,
i.e. the numerator is simply ((q − k)n+ i)k.

Combining these derivations into Eq. (B.6) we get the wanted
formula

uqn+i =

(
n

n− 1

)qn+i
+

q∑
k=1

(−1)k
(

n

n− 1

)(q−k)n+i
((q − k)n+ i)k

k!(n− 1)k

=

q∑
k=0

(−1)k
(

n

n− 1

)(q−k)n+i
((q − k)n+ i)k

k!(n− 1)k
;

and so Eq. (B.3) is valid in the case where 0 < i < n.
The case of i = 0 is only slightly different. Eq. (B.3)

and (B.5) remain the same even in case of i = 0, but in the
Eq. (B.4) the summation is only for k = 0, . . . , q−1. However,
when i = 0 and k = q the term ((q − k)n + i − 1)k = (−1)k

in (B.4) equals zero. Therefore, the term for k = q may be
added to the sum, and the case of i = 0 can be covered by
exactly the same derivation steps.

Hence, our proof is completed.


