
On Content-Centric Router Design and Implications

Somaya Arianfar1, Pekka Nikander2 and Jörg Ott1
1 Aalto University, 2 Ericsson Research, NomadicLab

ABSTRACT
In this paper, we investigate a sample line-speed content-
centric router’s design, its resources and its usage scenarios.
We specifically take a closer look at one of the suggested
functionalities for these routers, the content store. The de-
sign is targeted at pull-based environments, where content
can be pulled from the network by any interested entity. We
discuss the interaction between the pull-based protocols and
the content-centric router. We also provide some basic feasi-
bility metrics, discussing some applicability aspects for such
routers.

1. INTRODUCTION
Research on future Internet architectures has pursued nu-

merous directions. One suggestion is changing the archi-
tecture from a host-centric to a content-centric design [11],
moving from the sender-controlled send/receive paradigm
to a receiver-controlled model [17, 18], based on the pub-
lish/subscribe paradigm [10]. Recent research indicates that
such “pub/sub” systems may offer improved robustness, us-
ability, and security for both the network and the applica-
tions (e.g., [18, 19]). To achieve these improvements, the
presented proposals suggest adding different kinds of func-
tionality to the networking nodes, from serving the pending
interests (subscriptions) to keeping a content store (cache)
(e.g., [11]). However, the feasibility and the implications
of adding these functions to the networking nodes have not
been sufficiently discussed yet.

In this paper, we investigate the design of a content-centric
router, and its usage scenarios. Specifically, we take a closer
look at one of the suggested new functions for these nodes,
the content store. The content store is, essentially, a storage
area in the router that can be used as an explicit packet
cache. It may even replace or use a large fraction of the
memory used in today’s routers for packet queuing; see Sec-
tion 3.3 for the details. In our work, we assume a granularity
of traditional packets for dealing with the content. We con-
sider this choice as well-founded, as packets are a proven

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM ReArch 2010, November 30, 2010, Philadelphia, USA.
Copyright 2010 ACM 978-1-4503-0469-6/10/11 ...$10.00.

method for multiplexing and readily supported by network-
ing equipment. This allows for incremental deployment of
our content-centric routers.

Contrary to the current Internet, we look at content-centric
routers as conjoint devices for both storing and forwarding
information. We introduce a simple and efficient router de-
sign that can perform both of these operations at line-speed
and that is able to serve, on its own, as a transient source
of the content.

The design is targeted at pull-based environments, where
any node interested interested in the content can pull it from
the network [8, 11, 17]. This makes our work different from
caching-enabled router proposals, e.g. [3, 6], which look at
inter-packet redundancy elimination in push-based environ-
ments. In those designs, it is not only difficult to do caching
at line-speed but it is also resource consuming. Their diffi-
culty comes from the limiting factors of needing to encode
and decode packets at different locations in the network and
from requiring different levels of the co-ordination between
the encoders, decoders, and other components of the system.
Our design, on the other hand, relies on the content-centric
networking principles and its pull-based logic. It introduces,
network-wide, a set of content-centric routers that can work
at line-speed without extra co-ordination.

We also provide an approximation on the required re-
sources for our design. We believe that having content-
centric routers as transient content sources can, as such,
offer many functional and optimization benefits, expected
from a shift toward content-centric networking. Our early
evaluation results support this claim.

2. BACKGROUND
Content-centric network design fundamentally decouples

the interests from the sources. Parties interested in a given
piece of content do not need to know where to look for it.
Hence, one can and has to assume that the content is iden-
tified, addressed, and matched independent of its location
anywhere in the network.

Looking at the packet networks, they can only forward
packets of up to some maximum packet size. Pieces of con-
tent larger than this limit require segmentation before they
can be transmitted. A common design approach—which we
also assume—is that each resulting segment is a uniquely
identifiable piece of content in its own right, treated as an
independent unit. Hence, for example, anything larger than
1280 bytes (the default minimum MTU size of IPv6) needs
to be independently identifiable. As a result, fragmentation
as such is not a big issue, as long as proper packet identi-

fiers are used. That is, each packet needs to be associated
with a persistent identifier that is valid independent of any
transport connections or other retrieval mechanisms.

In the content-centric network (CCN) design [11], con-
tent is explicitly addressable at all levels of the architec-
ture. At the lowest level, packets—as the smallest pieces of
content—have their own identities and attributes (e.g. for
security) and can be addressed almost independently of any-
thing else. The naming architecture follows a hierarchical
structure. The matching between a piece of content and an
expression of interest is based on these names. If the content
name in an interest packet matches with the content-name
(identifier) of a (cached) data-packet, it is considered a cache
hit and the data-packet is forwarded to the requester.

PSIRP [17], as another content-centric proposal, uses a
different approach to data naming. It follows an approach
similar to DONA [13]’s flat labels, using a combination of
cryptographic measures; it uses a cryptographic fingerprint
computed over the piece of content or some other similar,
algorithmically generated identifier. The content retrieval
approach is then quite similar to CCN, at least at the ab-
stract level.

With the aim of being independent of any specific nam-
ing proposals, in this paper we call the lowest level content
identifiers as packet identifiers (PIds). We assume a content-
retrieval mechanism that follows the pub/sub model similar
to CCN and PSIRP. That is, each content-centric router is
able to forward, store, match, and send cached data pack-
ets, based on these PIds. We assume that the PId depends
on the actual bits of the packet, allowing any receiver to
distinguish between different versions of the whole content
(/packet) it is requesting, avoiding the versioning problem
typical to many caching systems.

In addition to identifying content, the system must also
be able to identify destinations. That is, each router (and
the actual data sources) need to be able to send data-packets
back to the requester who has indicated interest in the con-
tent.1 CCN solves this need by keeping pending interest
tables in the routers, using this table to forward data back
to the requesters. PSIRP allows for a set of different ap-
proaches, including ones where each packet carries a separate
forwarding capability [12]; optionally, the PSIRP forwarding
capabilities may even be content-dependent themselves [16].
Our design aims at allowing any suitable method; however,
to keep the argumentation simple and focused on the con-
tent store, we assume that the router need not keep any
per-request state. Instead, each request packet may carry a
back-pointing forwarding identifier in itself.

3. CONTENT-CENTRIC ROUTERS
As a first step towards introducing a design for content-

centric routers, we start by considering and organizing the
router memory as an efficient cache instead of considering
it merely as a packet buffer. We rely on the fact that once
a packet has been written to the memory, it remains there
until it is overwritten by another packet. There is no funda-
mental reason why a stored packet could not be addressed
explicitly, allowing it to be re-used for purposes other than

1The requests also need to be routed. CCN more-or-less re-
lies on underlying IP network, with DNS, while PSIRP uses
a DHT-like rendezvous. For this paper we simply assume
that one of these many methods is used underneath.

just queuing and pushing it out through an interface; in a
way, this is similar to OS-level page sharing [14], but at a
different level.

Although using caching in the routers is not a new idea
on its own, in our design it is different as caching becomes a
core part of the router functionality, in a way similar to what
queuing is today. We make the caching an internal router op-
eration rather than a network coordinated procedure. The
resulting cache is called a content store, as it allows every
single content-centric router to act as an independent source
of cached content. In the following, we present our design in
a content-centric environment, implicitly taking the router’s
speed, throughput, and other resources into account. In the
next section, we then discuss the amount of resources re-
quired to support such a design.

3.1 Content store structure and operations
Our reference router model follows today’s standard router

memory hierarchy of CAM, SRAM, and DRAM. The con-
tent store (cache) contains two main components: a packet
store and an index table to access the store; see Fig. 1. Pack-
ets are assigned to different locations in the packet store.
The index table indexes the packets in the packet store.

The packet store is large and would be kept in the router’s
DRAM. The size of index table is smaller, and divided be-
tween DRAM and SRAM. The address for the incoming
packets can be either pre-defined, using a part of the DRAM
in a round-robin or random-replacement manner, or it can
be calculated on the fly, based on available free space at the
time of packet insertion. For now, we assume pre-computed
fixed-sized packet cells, used as assigned by the PId indexing
process.

3.1.1 Insertion and Deletion
As a starting point, we assume that all packets arriving

at a router are indexed and cached; we relax that a little
bit later. Each entry in the index table stores the PId, the
packet’s location in the DRAM, and some status informa-
tion. These are divided between the SRAM and DRAM,
aiming to minimize the amount of SRAM needed. However,
there needs to be enough of information in the SRAM so
that the router can determine, with high enough confidence,
if it has stored a given packet or not, and when writing a new
packet to the cache, to determine which packet to replace.

The design of the overall local caching system is depicted
in Fig. 1. Each incoming packet is written to the available
packet cell in the DRAM packet store, and its index infor-
mation is updated at the index table.

Packet indexing may be implemented in different ways,
trading off space and speed. Depending on the structure and
the randomness of the PIds, the index address corresponding
to a PId can be defined from a hash over PId, H(PId), or
from a some range of the PId bits. For the purpose of this
paper, we consider index addresses that are directly drawn
from the PId, e.g. bits{0...23}. The SRAM-stored part of an
index entry needs to store a non-overallpoing range of the
PId’s bits, e.g. bits{24...51}. With this, the router can check
from the SRAM if it has any packet with the bits {0..51}
matching those of a given PId.

The easiest way to handle SRAM conflicts, i.e. packets
where the address bits match but the stored bits do not,
is to simply cache only one of the conflicting packets; see
below. More elaborate schemes could use the SRAM as a

Figure 1: Structure of cache and queue in router’s

memory

hash table instead of using it as a simple array, with different
bit ranges as addresses and/or buckets that can store more
than one item.

To increase the probability of finding free space, one can
employ different methods to calculate a number of candidate
index addresses. For example, using parallel hash functions
or choosing different ranges of the bits, {Si}s, with evenly
random distributed PIds, can result in multiple candidate
addresses. In case some of the index entries point to occu-
pied locations, there is still the possibility that at least one
of them may point to a free location.

When considering a data packet for insertion, if there is an
SRAM match, then the router may ignore the packet, since
the probability of a false positive is around 2−52. If there is
no match, the router needs to store the packet and to select
an index entry for this purpose. We could use, e.g., 8 bits in
the SRAM to store status information, allowing the router
select which index entry of the candidate ones to fetch from
the DRAM and to update.

The extra bits in each SRAM entry can also help choosing
which entry to replace. For instance, keeping the access
history of the last few seconds in each entry can help to make
cache replacement decisions similar to LRU. Of course, this
LRU method is limited to the few candidate index positions,
as doing the full LRU or similar methods would require long
lookup times and would be too expensive for the router.

The proposed method of indexing and lookup, with stor-
ing part of an index entry in the SRAM and accessing the
rest from the DRAM, can be compared to the BufferHash
method, suggested in [5].

We follow a lazy deletion model, meaning that a stored
packet is discarded only if a new packet arrives and needs to
be inserted at that location. In this way, the new packet’s
index replaces the old packet’s index in the index table and
the new packet itself overwrites the existing packet in the
packet store.

3.1.2 Lookup
Here, we propose a straightforward algorithm for packet

lookup in the router’s memory, aligned with our packet in-
sertion method. Upon receiving a packet request, the router
searches for the requested packet’s PId in the index table.
As explained above, the router first uses some bits from PId
or H(PId) as the address to an SRAM-located partial in-
dex entry; when using multiple sets, {Si}s, the SRAM is
checked for multiple potential partial index entries. After
the potential index entry is located, it is fetched from the
DRAM and compared against the rest of the bits in PId. If
there is a match, the router has the wanted packet in the

cache; otherwise there is a false positive.

3.2 Random autonomous caching
One of the main attributes that makes our design feasible

is the ability of doing random autonomous caching in the
content store. That is, the routers are able to cache data
packets and process data requests randomly. In contrast
to the other similar packet caching proposals, this provides
the possibility of very simple load-sharing between routers.
Since the design does not need encoding, decoding, and any
other kinds of coordination, the decision over caching and
processing a packet remains completely local to the router.
Depending on how busy or interested a router is, a packet
can either be both processed and forwarded, or only for-
warded to the next router along the forwarding path.

3.3 Caching and queuing
In today’s non-caching routers, assuming congestion, each

received packet is buffered in DRAM and a pointer to it is
enqueued in SRAM for scheduling. The same scheduling can
still be done in our system, if needed. However, since we use
hashes for random placement of the packets, there will be no
FIFO tail competition similar to what exists between TCP
flows today [9].

Depending on the details of the cache replacement algo-
rithm, there may be a small probability of conflicts between
caching and queuing requirements, if both the cache and the
queue use the same memory. Consider a new packet that
needs to be queued but happens to hash only to occupied
locations. We then have two options. First, we can forcedly
delete one of the already cached packets, freeing the location
for the new packet. Second, as collisions are rare, we can
use a small amount CAM to store the indices for colliding
high-priority packets.

The former method is especially usable in the case of ran-
dom autonomous caching, while the latter is better if we aim
for full traffic caching. In the unlikely event that all storage
locations are occupied by other queued packets, this results
in a packet loss. This is no different from a queue overflow
in current routers.

3.4 Packet identifiers and pull-based protocols
Compared to the limited caching proposals in the current

Internet, the efficiency of our design partly relies on receivers
knowing of the packet identifiers and the pull-based logic of
the proposed content-centric transport protocols [8, 11, 18].

Most of the existing protocols are based on having a packet-
naming entity somewhere upstream on the path. That is,
there is a router upstream from the bottleneck link/path
that continuously checks incoming packets, gives a name the
new ones, and replaces already cached packets with their
names. With this information, a downstream router can
then cache the newly named packets and replace any packet
references (names) with the actual packets. Most of the
time, these operations require the same amount of the mem-
ory and similar memory management policies at both ends
of the bottleneck link. Being invisible to both upstream and
downstream nodes, these methods do not affect the upward
traffic or the server load. This appears to be the case, for in-
stance, in parallel video streaming sessions, when the server
may become overloaded with sending the same data several
times.

In our case, packet identification takes place at the end-

hosts, leading to multiple advantages. First, it removes the
need for an upward in-network entity to continuously name
and encode the packets. Second, as a result of the first ad-
vantages, our method removes collaborative memory man-
agement requirements between the upward and downward
routers on the bottleneck path. Third, it reduces the load
on the upward path and toward the server. The third advan-
tage comes from the combination of using pre-defined packet
identifiers and using pull-based protocol where a request for
an identified packet may never reach the server.

In pull-based content-centric protocols, the requester knows
the packet PIds beforehand or can generate them locally.
The requester then requests each of the packets (logically)
separately; in practice, the requests can be generated in par-
allel, following a logic somewhat similar to the TCP sliding
window.

As each content-centric router understands the request
and response packets, it can easily cache responses (data
packets) and reply to requests. If a request packet is an-
swered from the cache, the request need not be forwarded.
In this way, a router can independently reduce the load on
the upward path, without any inter-router co-ordination ef-
fort. It is also expected to reduce the content retrieval time
by the transport protocol.

4. RESOURCES
So far, we have discussed the technical feasibility of line-

speed content-centric routers. While we do not claim we
understand the overall complexity of applying our design to
current routers, we provide some estimation of the individual
router resources that such design would require. In this
section, we give an approximation of the required resources
for these kinds of routers, in terms of hardware and cost.

4.1 Processing throughput and memory latency
Considering processing, with a suitable ASIC or FPGA

design, computing the index location, examining the result-
ing index entry, and writing the new index entry, takes at
most a few clock cycles. The latency associated with writ-
ing or reading a packet to/from the DRAM takes the largest
number of cycles, especially if slower and less power hungry
DRAM is used.

Considering memory latency and assuming the worst case
of short, 40 byte packets, OC-192 (10 Gb/s) and OC-768
(40 Gb/s) give packet inter-arrival times of 32ns and 8ns,
respectively. Given the typical DRAM random access time
of around 50ns, it is quite feasible to randomly access a
memory bank once for every 2 or 7 packets for OC-192 and
OC-768, respectively. Using several parallel banks and/or
autonomous caching may be used to make sure that the
DRAM latency does not become a bottleneck. It may also
be possible to write multiple small packets at once, only
keeping their SRAM indices separate. A more futuristic way
of looking at the problem would be replacing DRAM with
new chips, such as Reduced Latency DRAMs (RLDRAMs),
that have current random access time of 15ns [1].

It is worth emphasizing the role of load sharing here com-
pared to other router caching proposals. With the random
autonomous caching and replying behavior, any operation
that may appear heavy for the router can be easily passed
to the next hop. For example, if a router is busy writing a
packet to the memory, an arriving packet retrieval request
that would require a read from the same memory bank can

be passed unprocessed to the next hop. This kind of behav-
ior keeps the overall system performance high. It also helps
the individual routers to adjust their request serving rate
based on their processing resources.

4.2 Storage
There is no definite limit on the amount of storage and, re-

spectively, the time to cache packets. Routers today already
have some amount of storage for buffering the packets. For
example, the forthcoming 10G NetFPGA cards have three
SRAM chips, each 72Mb, and four fast RLDRAM chips.
Each RLDRAM chip is 512 Mb, together providing 250ms
of full speed buffering capacity. The amount of SRAM in the
router is limited mainly due to cost; however the amount of
DRAM or RLDRAM is mostly kept relatively low, having
capacity to buffer only 250ms worth of the packets, or even
less; cf. [7].

From the caching point of view on the other hand, both
the early (late 1990s) work on web caches [20] and the recent
work on the time between the first and the last match in
packet level caches [4], indicate that a few seconds of packet
caching leads to major benefits. The results in [4] suggest
that around 50% of the potential retransmission savings can
be achieved within 10 seconds. Considering 10 Gb/s line
speed, a suitable amount of in-router packet memory would
need to be 100 Gb, to keep all the traffic passing through an
interface for 10 seconds, costing some $200–300, today.

Assuming a large packet size of 1500 × 8 bits, potentially
typical for the kind of content-centric networking we are con-
sidering, indexing 100 Gb of data would need some 9 mil-
lion index entries in SRAM. The size of the index table then
would be dependent on the size of each entry.

In 10 seconds, some 9 million packets will pass through
the router. We need to choose the SRAM-stored fraction of
the PId so that it minimizes the false positive rate over these
number of packets. In the case of our example of matching
space of 52 bits between different packet PIds, with 9 million
packets and 9 million SRAM entries of each consisting of 28
bits, the probability of a false positive is around 3.3%2. This
rate seems to be acceptable for our content-centric routers.
Using 52 bits for matching, with 24 bits used for addressing,
means having index entries of 28 bits each. Adding 8 bits of
status to that gives us 36 bit SRAM words.

Hence, the overall required SRAM for keeping the index
table of 9 million 36 bit entries is around 324 Mb. Consid-
ering that commercial SRAM chips are commonly available
72 Mb (2M×36) configurations, with the assumed price of
$125 per chip, the required 324Mb of SRAM for indexing
large packets would cost some $500. Hence, our proposed
content-centric caching memory would cost ≈$800 per line
interface, for a 10s long full cache at 10 Gb/s. Given that
multi-port line cards for commercial routers at 10 Gb/s have
typical per-port price in the range of $1500–2500, our ball-
park figure for a 10s long cache appears to be reasonable.
The cost can be reduced by using methods such as random
autonomous caching. The indiciations that memory prices
drops faster than bandwidth [15] also help to argue that this
cost would be more reasonable in the near future.

4.3 Energy consumption
While the price of the memory itself may not be a problem

anymore, power consumption can become a limiting factor.

21 − ((1 − 2−28)9000000)) ≈ 0.033

In general, SRAM circuits consume significantly less power
than typical DRAM circuits, allowing us to assume moder-
ately fast SRAMs. From the DRAM side, our system can
keep the total energy consumption reasonable by not re-
quiring fast memory, using instead multiple banks of slower
memory. Given that a commercially available 1GB DRAM
module uses around 1W of power when active all the time [2],
12 GB (100 Gb) would use around 100 kWh per year, which
is likely to be relatively small compared to the thermal load
of the rest of the system. Assuming a high power cost of
$0.20/kWh, the annual cost would be in the order of $20.

In our system, since caching is not done as a hard reliabil-
ity component in the network, autonomous caching can be
used reduce the average cost of individual routers while still
keeping the overall efficiency high.

5. SIMULATIONS
To have some basic indications of the efficiency of our de-

sign, in terms of its interaction with our pull-based transport
protocol and the effects of random autonomous caching, we
have run some early ns-3 simulations. While our results
are very early, they indicate that the design, when used in
wide-scale with suitable pull-based protocols, could provide
clearly improved traffic efficiency.

Our simulation settings consists of an ns-3 implementa-
tion of a native content-centric stack, using in-packet Bloom
Filters [12] for forwarding and a new pull-based transport
protocol [8] for content retrieval.

Figure 2: Example topology with requesters on the

left, original sources on the right, and potential

caches along the path.

In our simulations, we focused on the interactions between
the content-centric router with random autonomous caching
and our pull-based transport protocol. In each experiment,
we had one or more transport flows, all trying to retrieve all
the packets belonging to a bigger higher level content item,
e.g., a video clip. We used 8 different sets of the bits over
the PIds for indexing. As a result, the overall write collision
rate in our simulation was less than 0.3%. The basic scenario
includes one of the branches shown in Fig. 2, with 8 routers
in the path. Each intermediate router tries to cache the
packets passing by it with the probability d.

In the first set of the experiments, we considered a high
level content item that was first transfered once. A second
request was then started within the caching lifetime of all of
the original packets. As a result, requests for cached packets
arrived at the first router on the path, and if not served,
continued upward.

To study the effect of random autonomous caching, we

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %
110 %

 1 2 3 4 5 6 7 8 9

C
ac

he
 re

tr
an

sm
is

si
on

 e
ff

ic
ie

nc
y

(C
D

F)

Source [#]

d=1
d=1/2
d=1/3
d=1/4
d=1/8

Figure 3: In-network cache efficiency for different

caching probabilities in case of one flow in the net-

work, with pre-cached routers

varied the percentage of packets cached at each router, choos-
ing the cached packets randomly with the probability d of
1, 1/2, 1/3, 1/4, and 1/8. The results, shown in Fig. 3, indi-
cate that the overall mean efficiency can be quite high, even
with partial caching at each router. Obviously, when reduc-
ing the caching fraction, the number of routers needed for
a given coverage increases; with full caching, the first cache
essentially covers all the requests, while with 50% random
caching, 4 caches achieve ∼ 95% hit rate. For the relatively
low caching fraction of 12.5%, the hit rate across 8 hops
reached only ∼ 60%, indicating that some sort of inter-cache
coordination might be useful at such low caching rates.

Our next simulation examined a more general content re-
trieval scenario, where all caches are initially empty, and
they get filled in with real time traffic consisting of a num-
ber of parallel transfers. For this experiment, we started
8 distinct content retrieval flows, each requesting the same
higher level piece of content simultaneously. 2 or 4 receivers
from the different branches of Fig. 2 were chosen to pull the
packets, in a rate controlled manner. The basic goal was
to be as close as possible to real scenarios, where the data
request rate varies at different times and caches happen to
be created and replaced during the transfer. The intermedi-
ate routers’ hop numbers indicate them as separate partial
sources in the plots.

Fig. 4 illustrates the average amount of packets retrieved
from different caches, with different caching rates. It can be
seen that the requesters are able to retrieve a large propor-
tion of the packets from the intermediate routers, reducing
the traffic load on the upward path towards the source. The
retrieval, though, is less efficient than in our previous exper-
iment, because of the simultaneous filling of the caches.

Table 1 shows the time for each receiver to finish re-
trieving the whole content (Flow Completion Time: FCT).
Comparing the results with the case with no caching (d=0),
autonomous caching achieves a significant reduction of the
FCT, even with low percentage of the caching in the routers.
It is obvious that if there are larger number of simultaneous
flows sharing the same bottleneck links toward the source,
the model will achieve an even better level of the efficiency.
It is important to note that this improvement is achieved
solely based on the independent random caching in the con-
tent store and without any extra coordination effort.

0 %

10 %

20 %

30 %

40 %

50 %

 1 2 3 4 5 6 7 8 9

M
ea

n
Pa

ck
et

s
R

et
ri

ev
ed

 F
ro

m
 [%

]

Source [#]

d=1/2
d=1/4
d=1/8

Figure 4: Mean percentage of packets received from

each hop by 8 receivers. There are 8 simultaneous

flows retrieving the same content.

d Mean FCT(s) Standard Deviation

0 1600.0 0.03
1/8 819.47 1.79
1/4 689.57 5.70
1/2 488.05 1.49

Table 1: Mean FCT of flows, requesting same con-

tent at same time.

6. CONCLUSION AND FUTURE WORK
In this paper, we have discussed a specific design with

a content store for content-centric routers. This design is
unique in the sense that it supports combined caching and
queuing, random autonomous caching, and pull-based envi-
ronments, without any need for caching-related co-ordination
efforts between the routers. We have estimated the amount
of resources required to support such a design. The design
looks easily affordable compared to current routers, and has
some potential to change the argument over dumb pipes.
Our early evaluation results also indicate that the inter-
actions between our content-centric routers and pull-based
content retrieval protocol may result in a higher level of ef-
ficiency, compared to today’s networks.

Our immediate future plan is to implement the system on
the Stanford NetFPGA. Eventually, studying different com-
binations of push- and pull-based protocols, smarter ways of
caching, and more realistic traffic patterns, are also part of
our planned future work.

Acknowledgments
We would like to thank Aditya Akella for his valuable com-
ments while preparing the final version of this paper. This
work has been partially funded by the Finnish ICT SHOK
Future Internet project.

7. REFERENCES
[1] Micron rldram.

http://www.micron.com/products/dram/rldram/.

[2] Micron system power calculator. http://www.micron.
com/support/part_info/powercalc.aspx.

[3] Anand, A., Gupta, A., Akella, A., Seshan, S.,
and Shenker, S. Packet caches on routers: the
implications of universal redundant traffic elimination.
In SIGCOMM ’08 (2008).

[4] Anand, A., Muthukrishnan, C., Akella, A., and
Ramjee, R. Redundancy in network traffic: findings
and implications. In SIGMETRICS (2009).

[5] Anand, A., Muthukrishnan, C., Kappes, S.,
Akella, A., and Nath, S. Cheap and large cams for
high performance data-intensive networked systems.
In NSDI’10: Proceedings of the 7th USENIX
conference on Networked systems design and
implementation (Berkeley, CA, USA, 2010), USENIX
Association, pp. 29–29.

[6] Anand, A., Sekar, V., and Akella, A. SmartRE:
An architecture for coordinated network-wide
redundancy elimination. In SIGCOMM ’09 (2009).

[7] Appenzeller, G., Keslassy, I., and McKeown, N.
Sizing router buffers. SIGCOMM Comput. Commun.
Rev. 34, 4 (2004), 281–292.

[8] Arianfar, S., Eggert, L., Nikander, P., Ott, J.,
and Wong, W. Contug: A receiver-driven transport
protocol for content-centric networks. Under
submission, 2010.

[9] Chen, S., and Bensaou, B. Can high-speed
networks survive with droptail queues management?
Comput. Netw. 51, 7 (2007), 1763–1776.

[10] Eugster, P. T., Felber, P. A., Guerraoui, R.,
and Kermarrec, A. M. The many faces of
publish/subscribe. ACM Comput. Surv. 35, 2 (2003),
114–131.

[11] Jacobson, V., Smetters, D. K., Thornton, J. D.,
Plass, M. F., Briggs, N. H., and Braynard,
R. L. Networking Named Content. In Proc. ACM
CoNEXT (2009), pp. 1–12.

[12] Jokela, P., Zahemszky, A., Esteve Rothenberg,
C., Arianfar, S., and Nikander, P. LIPSIN: Line
Speed Publish/Subscribe Inter-Networking. In Proc.
ACM SIGCOMM (2009), pp. 195–206.

[13] Koponen, T., Chawla, M., Chun, B.-G.,
Ermolinskiy, A., Kim, K. H., Shenker, S., and
Stoica, I. A data-oriented (and beyond) network
architecture. In SIGCOMM ’07 (2007).

[14] Milos, G., Murray, D. G., Hand, S., and
Fetterman, M. Satori: Enlightened page sharing. In
Usenix (2009).

[15] Patterson, D. A. Latency lags bandwith. Commun.
ACM 47, 10 (2004), 71–75.

[16] Rothenberg, C., Jokela, P., Nikander, P.,
Sarela, M., and Ylitalo, J. Self-Routing
Denial-of-Service Resistant Capabilities using
In-Packet Bloom Filters. In Proc. EC2ND (2009).

[17] Trossen (ed.), D. Architecture Definition,
Component Descriptions, and Requirements.
Deliverable D2.3, PSIRP Project, 2009.

[18] Trossen (ed.), D. Update on the Architecture and
Report on Security Analysis. Deliverable D2.4, PSIRP
Project, 2009.

[19] Trossen (ed.), D. Final Updated Architecture.
Deliverable D2.5, PSIRP Project, 2010.

[20] Wolman, A., Voelker, M., Sharma, N.,
Cardwell, N., Karlin, A., and Levy, H. M. On
the scale and performance of cooperative web proxy
caching. In SOSP ’99 (1999), pp. 16–31.

