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ABSTRACT
We study the Round-Robin (RR) routing to a system of par-
allel queues. The cost structure comprises two components:
a service fee and a queueing delay related component, where
both can be job- and queue-specific random variables. With
Poisson arrivals, the inter-arrival time to each queue obeys
Erlang’s distribution. This allows us to study the mean and
transient behavior of the queues separately. The service fee
is independent of the queueing, and we obtain the corre-
sponding mean cost rate and value function in closed forms.
With respect to queueing delay, we first derive integral ex-
pressions enabling efficient computation of the correspond-
ing value function. By decomposition, these yield also the
value function for the whole system of m parallel queues
fed by RR. Given the value function, one can carry out the
first policy iteration step with arbitrary holding cost rates
(e.g., delay, slowdown etc.) yielding efficient size-, cost- and
state-aware policies. Moreover, the mean waiting time in an
M/G/m-RR system gets resolved at the same time. The re-
sults are demonstrated in the numerical examples, where we
compute near optimal task assignment policies for a sample
system with two servers.

Keywords
Round-Robin, M/G/m-RR, Erl/G/1 queue, Task assign-
ment, Dispatching, Parallel queues, MDP

1. INTRODUCTION
In the task assignment (or routing) problems, one chooses

a server for each new job immediately upon the arrival. The
objective is to minimize the mean response time, slowdown,
energy consumption, or some other performance quantity of
interest. Within each queue, the First-Come-First-Served
(FCFS) scheduling is usually assumed, but other scheduling
disciplines can also be considered. Even though task assign-
ment problems have been studied extensively in the liter-
ature, only a few optimality results are known, and these
generally require homogeneous servers.
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The Join-the-Shortest-Queue (JSQ) policy assigns a new
job to the server with the fewest tasks. Assuming exponen-
tially distributed inter-arrival times and job sizes, and ho-
mogeneous servers, [33] showed that JSQ, followed by FCFS,
minimizes the mean delay. Since then the optimality of JSQ
has been shown in many other settings [32, 9, 18, 31, 29,
24, 1]. Similarly, Round-Robin (RR), followed by FCFS,
has been shown to be the optimal policy when it is only
known that the queues were initially in the same state, and
the routing history is available [9, 27, 26]. For RR com-
bined with the Shortest-Remaining-Process-Time (SRPT)
scheduling, see [8]. With a Poisson arrival process and RR,
the inter-arrival times to each queue obey Erl(m,λ) distri-
bution, where m denotes the number of servers [15].

The Least-Work-Left (LWL) policy assigns a new job to
the queue with the least amount of unfinished work. LWL
is equivalent to M/G/m with a shared queue [16, 15], and
thus it makes sure no server is idle when there are jobs in
the queue. Interestingly, with constant service times, LWL,
JSQ and RR make equivalent decisions as in M/D/m (with
a shared queue), which can also be shown to be optimal with
respect to the mean delay.

The M/G/m system is non-trivial to analyze. More re-
sults are available for M/D/m. The first analytical result for
the distribution of waiting time in M/D/m is by Crommelin
[6]. Numerically much more stable expressions are given by
Franx [11], who has also analyzed its transient behavior in
[12]. In particular, [11] gives the waiting time distribution
as a function of the queue length distribution, allowing also
the determination of the mean waiting and sojourn times.
For extensive surveys on the topic we refer to [30, 23].

Value functions for single server queues with Poisson ar-
rivals have been derived in [25, 2, 5, 21], which form the basis
also for value functions for task assignment systems operat-
ing under a state-independent policy such as the Bernoulli-
split. With state-dependent policies, such as RR and LWL,
the queues are coupled and the analysis gets more compli-
cated. In this paper, we derive a set of integral equations
that enable efficient computation of the value function with
respect to arbitrary holding cost based cost structure in a
size-aware task assignment system subject to RR routing
policy and FCFS scheduling discipline. Jobs arrive accord-
ing to a Poisson process with rate λ and the servers are
assumed to be identical.1 As an interesting and useful side

1In fact, the analysis does not depend on this and the results
hold with very minor modifications also for heterogeneous
systems. However, the Round-Robin policy is not an ideal
candidate if the service rates are highly asymmetric.
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Figure 1: Round-Robin routing to m servers.

product, these expressions also provide a new approach to
determine the mean waiting time in an M/G/m-RR system,
whereas using the results given in [11] for M/D/m-RR re-
quires the determination of the queue length distribution as
an intermediate result.

The rest of the paper is organized as follows. First, in Sec-
tion 2, we analyze a single Erl/G/1 queue and derive both
differential and integral expressions for the value function.
Due to the decomposition, the value function for M/G/m-
RR is also obtained. Section 3 discusses the task assignment
problem and policy iteration, and gives some numerical ex-
amples. Section 4 sheds light on possible more elaborate
applications, and Section 5 concludes the paper.

2. ANALYSIS OF THE ROUND-ROBIN
In this section, we analyze the Round-Robin routing pol-

icy illustrated in Fig. 1. With Poisson arrivals, the arrival
process to each queue is Erl(m,λ)/G/1, which facilitates the
analysis. First we describe the model and the cost structure,
and then derive expressions for calculating the value func-
tions for arbitrary job- and queue-specific service fees and
holding cost rates, which also give the mean delay.

2.1 Model and Cost Structure
We consider a stable M/G/m-RR system illustrated in

Fig. 1. With a Poisson arrival process, each queue behaves
according to an Erl(m,λ)/G/1 queue, where the inter-arrival
time in each queue is a sum of m independent and expo-
nentially distributed time-intervals, i.e., phases, with mean
durations of 1/λ. Jobs arrive at the end of phase m, after
which a new phase 1 starts. The evolution of the queues
is naturally coupled as they see the same Poisson process,
while each of them is in a different phase (1, . . . ,m). The
cost structure comprises two components. First, Job j pays
a service fee of Sj upon entering a queue. Second, it incurs
costs at holding cost rate Hj while waiting in a queue.2

We further assume that the service time X, the service
fee S and the holding cost rate H all may depend on the
queue a job is assigned to. Thus, in general, Job j is de-
fined by triples (Xj,k, Hj,k, Sj,k), where k corresponds to
the queue, k = 1, . . . ,m. In practice, the holding cost rate
is often job-specific, Hj,k = Hj and the service fee is ei-
ther a server-specific constant or a function of service time,
Sj,k = gk(Xj,k) (e.g., per bit charging in mobile networks).
That is, one can associate the holding cost with the queueing
delay a job experiences and the service fee with a (server-
specific) service cost/time (e.g., energy). In particular, we
assume that jobs are i.i.d.,

(Xj ,Hj ,Sj) ∼ (X,H,S),

2This is slightly different than, e.g., in [20, 22], where the
holding costs are incurred also during the service time. In
our case, an equivalent cost can be defined using service fees.

while the different variables of a single job may depend on
each other (e.g., the service fee can be equal to the service
time). Note that with H = 1 and S = X, the costs incurred
are equal to the sojourn time.

With RR, the jobs are assigned sequentially, indepen-
dently of their holding cost rates and service fees, and hence
the above cost structure is unnecessarily complicated. How-
ever, later in Section 3, we consider also routing policies that
take into account the job- and server-specific characteristics,
and hence the notation.

2.2 State description for Round-Robin
When all servers are identical, the service fees can be

omitted and the state of the Round-Robin system can be
described by an m-tuple,

z = (u1, . . . , um),

where ui denotes the backlog in the queue currently in phase
i. Similarly, when considering the service fees, only the
phase matters and a sufficient state description is

z = (q1, . . . , qm),

where qi is the index of the queue currently in phase i. In
general, the state of the system can be described by

z = ((q1, u1), . . . , (qm, um)),

where (qi, ui) denotes the server and its backlog that is cur-
rently in phase i. Therefore, (q1, . . . , qm) is some permuta-
tion of (1, . . . ,m), whereas ui ≥ 0 for all i.

2.3 Service Fees
Let us first consider the service fees each Erl/G/1 queue

incurs. Let Sj ∼ S denote the service fee of the jth job
assigned to a given queue. Then let i denote the current
phase in the arrival process, i = 1, . . . ,m, such that at the
end of phase m a job arrives and a cost of Sj is incurred.

A sufficient state description with respect to service fees
is the current phase of the arrival process. Consequently,
the corresponding value function depends also only on the
current phase, and it is defined as the expected difference
between a system initially in phase i and a system initially
in equilibrium,

vi , lim
t→∞

E[Vi(t)− rst], (1)

where Vi(t) denotes the service fees incurred during (0, t)
when initially in phase i, and rs is the mean rate at which
service fees are incurred,

rs =
λE[S]

m
.

Proposition 1. The value function with respect to ser-
vice fees for an Erl(m,λ)/G/1 queue is

vi =
2i−m− 1

2m
E[S]. (2)

where i denotes the current phase of the arrival process, i =
1, . . . ,m, and E[S] is the mean service fee.

Proof. Value function, as defined in (1), measures the
expected difference in the cumulative costs from the given
initial phase i to the mean cost rate. For an arbitrary phase
i, the so-called Howard’s equation is

vi =
m− i+ 1

λ
(0− rs) + E[S] + v1.



The first term corresponds to the time interval before the
next arrival. During this time no service fees are collected
and the difference to the mean cost rate is 0−rs. The factor
(m− i+ 1)/λ corresponds to the mean time duration.

The second term is the mean immediate cost due to the
following arrival, after which the arrival process enters to
phase 1. The mean difference in costs between phase 1 and
the mean cost rate is v1 by definition, i.e., v1 takes care of
the future costs from that point onwards (recall the Markov
property). Consequently,

vi − v1 =
i− 1

m
E[S]. (3)

As each phase is equally likely, we have
∑
i vi = 0. Taking

a sum of (3) over i gives v1, which in turn yields (2).

Consider next the whole M/G/m-RR system and let S(k)

denote the service fee in Queue k. Due to the decomposition,
we have the following result:

Corollary 1. The value function w.r.t. service fees for
the M/G/m-RR system in state z = (q1, . . . , qm) is

v(z) =
1

2m

m∑
i=1

(2i−m− 1)E[S(qi)]. (4)

Note that the value function is insensitive to the arrival rate
λ and depends only on the phases (i.e., the RR sequence)
and the mean service fees. In fact, the constant offset in the
value functions is irrelevant to us, and we can equally use

v(z) =
1

m

m∑
i=1

iE[S(qi)], (5)

from which it is obvious that the Round-Robin sequence
assigning the jobs (initially) in the increasing order of the

mean service fee so that E[S(qi)] ≤ E[S(qi+1)] incurs the least
costs, as expected.

2.4 Virtual Waiting Time
We are often interested in the mean waiting and sojourn

time in a system. To this end, we define the virtual waiting
time in the system as the backlog of the queue receiving
the next customer. More precisely, we define the holding
cost rate of the system to be equal to the backlog of the
queue in phase m. Considering an individual Erl(m,λ)/G/1
queue, it thus incurs costs at the rate equal to the backlog
only during phase m, at the end of which a new job arrives.
This is illustrated in Fig. 2. Due to the PASTA property,
this corresponds to the waiting time the jobs arriving to the
M/G/m-RR system see. Let r̃ denote the mean cost rate in
a single queue and r in the whole system, r = E[W ]. With
identical servers, we have the elementary relationship

r̃ = r/m.

In general, the service times may be heterogeneous and{
r= E[W ] = (1/m)

∑
k E[W (k)]

r=
∑
k r̃

(k) ⇒ E[W (k)] = m r̃(k).

2.4.1 Single Erl/G/1 Queue
Consider next a single Erl(m,λ)/G/1 queue and let F (x)

denote the cdf of the service time X. Let It(i) and Ut(i, u)
denote the phase of the arrival process and the backlog in
the queue at time t, where (i, u) denote the initial phase,

(λ)Exp (λ)Exp(λ)Exp

costs incurred

phase

1 2 3

Figure 2: Sample path with m = 3 queues.

i = 1, . . . ,m, and the initial backlog, U0(i, u) = u. In this
RR-specific cost structure, the queue incurs costs at rate

Ct(i, u) , 1(It(i) = m) · Ut(i, u).

Let vi(u) denote the value function, where i is the initial
phase and u the initial backlog. Formally,

vi(u) , lim
t→∞

E[Vi(u, t)− r̃ t],

where Vi(u, t) denotes the costs a queue initially in state
(i, u) incurs during time t,

Vi(u, t) ,
∫ t

0

Cs(i, u) ds.

Proposition 2. The value function of an Erl(m,λ)/G/1
queue with respect to the virtual waiting time satisfies the
following system of integro-differential equations,

v′i(u) = −r̃ + λ(vi+1(u)− vi(u)), i = 1, ..,m−1

v′m(u) = u− r̃ + λ

∞∫
0

(v1(u+ s)− vm(u)) dF (s).
(6)

Proof. For u > 0, small δ > 0, and for phases i =
1, . . . ,m− 1

vi(u) = (0−r̃)δ+(1−λδ) vi(u−δ)+λδ vi+1(u−δ).

The first term corresponds to the difference between the cur-
rent cost rate (zero for phases i 6= m) and the mean cost rate
r̃ multiplied by the time-interval δ. With the probability of
(1−λδ), the phase remains the same and vi(u−δ) gives the
future contribution, and with the probability of λδ, the ar-
rival process moves to the next phase i + 1, the value of
which is given by vi+1(u−δ). In contrast, at the end of last
phase m a new job arrives, and thus for vm(u) we have

vm(u) = (u−r̃)δ+(1−λδ) vm(u−δ)+λδ
∞∫
0

v1(u+s) dF (s).

As δ → 0, the above yields (6).

For the special case of a constant service time ∆, the latter
equation in (6) reads

v′m(u) = u− r̃ + λ(v1(u+ ∆)− vm(u)),



and we have a first-order system of differential equations.
Considering an empty system with u = 0 gives

r̃ = λ(vi+1(0)− vi(0)), i = 1, . . . ,m− 1,

r̃ = λ
∞∫
0

(v1(s)− vm(0)) dF (s).
(7)

With a constant service time ∆, the latter equation reads

r̃ = λ(v1(∆)− vm(0)).

Combining (6) and (7) gives,

v′i(0) = 0, i = 1, . . . ,m,
v′′i (0) = 0, i = 1, . . . ,m− 1.

(8)

Adding the equations (7) together gives

mr̃ = r = λ

∫ ∞
0

(v1(s)− v1(0)) dF (s), (9)

which for a constant service time ∆ reduces to

mr̃ = λ(v1(∆)− v1(0)).

Similarly, we have for all i = 1, . . . ,m− 1

vi+1(0)− v1(0) =
ir̃

λ
. (10)

That is, initially the value functions vi(u) at u = 0 differ by
a constant amount of r̃/λ.

Note that both (6) and (7) are insensitive to a constant
term in the vi(u). The constant offset in the value func-
tions indeed is generally superfluous and we can set, e.g.,
v1(0) = 0. Unfortunately, (6) and (7) are difficult to solve
even numerically. If the mean cost rate r̃ was available in
a closed form, (7) would give the initial values vi(0) = 0
also for i = 2, . . . ,m. Moreover, even if the initial values
were available, v′m(u) still depends on the v1(u + s), s > 0,
and therefore the standard Runge-Kutta method could not
be applied to compute the vi(u) for u > 0. However, one
could solve the vi(u) numerically backwards for u < u∗ given
the vi(u

∗) were available for some u∗ > 0. We describe an
elegant approach to solve the vi(u) and r̃ in Section 2.4.4.

Finally, with m = 1 the Erl/G/1 queue reduces to M/G/1,
for which the exact value function is available [21]

v(u)− v(0) =
u2

2(1− ρ)
. (11)

It is easy to see that (11) satisfies (6), and applying to (7)
gives, as expected, the Pollazcek-Khinchine formula for the
mean waiting time.

2.4.2 M/G/m-RR System
Consider next the whole M/G/m-RR system. In general

case, the servers may be heterogeneous and the value func-
tions have to be determined separately for each of them.

Let v
(k)
i (u) denote the value function of Queue k currently

in phase i. Due to the decomposition to m parallel Erl/G/1
queues, we again have:

Corollary 2. The value function w.r.t. virtual waiting
time for M/G/m-RR in state z = ((q1, u1), . . . , (qm, um)) is

v(z) = v
(q1)
1 (u1) + . . .+ v(qm)

m (um). (12)

If the service times Xj,k are identical for every queue k, then

v(z) = v1(u1) + . . .+ vm(um).

2.4.3 Asymptotic Behavior
Below we argue that, with relatively broad assumptions,

the asymptotic behavior of the value function of the G/G/1-
FCFS queue is quadratic. For large u, the backlog decreases
with an average rate of 1 − ρ′, where ρ′ denotes the queue
specific offered load. The virtual waiting time incurred dur-
ing the remaining busy period corresponds to a triangle with
initial height u and base (= duration) u/(1−ρ′). Therefore,

v(u) ≈ u2

2(1− ρ′) −
u

1− ρ′ · r + v(0),

where the first term corresponds to the costs incurred during
the remaining busy period, the second term to the mean
cost rate during the same time-interval, and the third term
corresponds to what happens after that. For large u, the
first quadratic term dominates.

With Erl(m,λ)/G/1, in the context of RR, the costs are
accrued only in the final phase m as explained above (see
also Fig. 2). Let ρ denote the offered load to the whole
system, ρ = λE[X], so that ρ′ = ρ/m. The costs accrued
during the remaining busy period are roughly 1/m of the
“full triangle”, i.e., for u� 1 we have,

vi(u) ≈ u2

2(m− ρ)
, and v′i(u) ≈ u

m− ρ . (13)

2.4.4 Numerical Solution for vi(u)

The equations (6) that the value functions vi(u) must sat-
isfy can be written in an integral form that is suitable for
numerical computations:

Proposition 3. For an Erl(m,λ)/G/1 queue, the value
function vi(u) with respect to the virtual waiting time satis-
fies the following system of integral equations,

vi(u) =

(
e−λu−

1

i

)
vi+1(0)

+ λ

u∫
0

e−λ(u−s)vi+1(s) ds, i = 1, . . . ,m− 1,

vm(u)=

(
e−λu−

1

m

) ∞∫
0

v1(s) dF (s) +
e−λu+λu−1

λ2

+ λ

u∫
0

e−λ(u−s)
∞∫
0

v1(s+ `) dF (`) ds.

(14)

Proof. For i = 1, . . . ,m − 1, multiplying both sides of
(6) with eλu gives

eλuv′i(u) + λeλuvi(u) = eλu(−r̃ + λvi+1(u)).

The left-hand side is equal to (d/du) eλuvi(u), yielding

eλuvi(u) =

u∫
0

eλs(−r̃ + λvi+1(s)) ds+ vi(0),

vi(u) =
r̃

λ
(e−λu − 1) + e−λuvi(0) + λ

u∫
0

e−λ(u−s)vi+1(s) ds.

Similarly, for phase m one obtains

vm(u) =
r̃

λ
(e−λu − 1) + e−λuvm(0) +

e−λu + λu− 1

λ2

+ λ

∫ u

0

e−λ(u−s)
∫ ∞
0

v1(s+ `) dF (`) ds.



As we are generally interested in the differences between the
relative values, we can set v1(0) = 0 so that

vi(0) =
(i− 1)r̃

λ
, for i = 1, . . . ,m,

and

r̃

λ
=


vi+1(0)

i
, for i = 1, . . . ,m− 1,

1

m

∫ ∞
0

v1(s) dF (s).

Substituting these into the above gives (14).

Corollary 3. For a constant service time ∆, the latter
equation in (14) reads

vm(u) =

(
e−λu − 1

m

)
v1(∆) +

e−λu + λu− 1

λ2

+ λ

u∫
0

e−λ(u−s)v1(s+ ∆) ds.
(15)

Note that (14) expresses vi(u) as a function vi+1(u) for
i = 1, . . . ,m−1, and vm(u) as a function of v1(u). Given an
initial guess for any vi(u), provided, e.g., by (13), the equa-
tions (14) can be iterated until they converge. In practice,
the convergence turns out to be fast.

As a convenient side product of being able to determine
the value functions efficiently, also the mean waiting time,
r = E[W ], is obtained (with v1(0) = 0):

Corollary 4. Solving the value functions using (14) gives
also the mean waiting time E[W ] in the system,

E[W ] = λmv2(0), (16)

In order to compute E[W ], we do not need to find the waiting
time distribution first (which itself is non-trivial, [11]).

For m = 1, the insensitive solution (11) can be shown to
satisfy (14). That is, for the M/G/1 queue we have,

v(u) =
(
e−λu−1

) ∞∫
0

v(s) dF (s) +
e−λu+λu−1

λ2

+ λ

u∫
0

e−λ(u−s)
∞∫
0

v(s+ `) dF (`) ds,

which “trial”

v(u) =
u2

2(1− ρ)
,

satisfies independently of the service time distribution.

2.4.5 Generalized Round-Robin (GRR)
RR is a special case of the Generalized Round-Robin poli-

cies defined by predefined typically periodic sequences [13,
14, 3]. RR is optimal under certain assumptions when the
servers are identical. However, if some servers have different
service rates, then the even split of tasks that RR carries
out may no longer make sense. In [13], Hajek proves the
intuitive result that among a very large class of arrival pro-
cess, the one with constant inter-arrival times is optimal
for a single server queue with exponentially distributed ser-
vice times. Then, in [14], he shows that the so-called most-
regular-sequence is optimal for two, not necessarily identical,
servers when jobs again obey exponential distribution.

Suppose that the (external) sequence ai defining the task
assignments is periodic with m denoting the length of the
period. Without lack of generality, we can consider Queue 1.
With respect to service fees, both the mean rate and value
function are straightforward to deduce. We omit these for
brevity. For the virtual waiting time, let vi(u) again denote
its value function with respect to the backlog (in phases
with actual arrivals, ai = 1). For notational convenience,

we define vi+m(u) , vi(u). Similarly as earlier, we have a
system of differential equations,

v′i(u) =


−r̃+λ(vi+1(u)−vi(u)), if ai 6= 1,

u−r̃ + λ

∫
(vi+1(u+t)−vi(u)) dF (t), if ai = 1,

where the initial values are coupled,

v′i(0) =


− r̃
λ

+ vi+1(0), if ai 6= 1,

− r̃
λ

+

∫
vi+1(t) dF (t), if ai = 1.

That is, the generalized (periodic) RR can be analyzed es-
sentially the same way as RR. Also probabilistic variants,
where subsequences are chosen with certain probabilities (for
load-balancing reasons), are amenable to the same approach.

2.5 Waiting Time and General Holding Costs
Consider next M/G/m-RR with identical servers. The

backlog based holding cost rate c(z) = um can be seen as a
penalty for a long queue length. However, often one is in-
terested in the actual waiting time, possibly weighted with
arbitrary job-specific holding costs. Let U(t) = Um(t) de-
note the virtual waiting time at time t. With FCFS, this is
the waiting time an arriving customer sees, W ∼ U . The
mean cost rate w.r.t. waiting time is

rW = λ · r = λ · E[W ],

i.e., the rate at which the system incurs waiting time.

Proposition 4. The value function for an M/G/m-RR
system with respect to waiting time is

ṽ(z) = λ v(z) (17)

where v(z) is the value function w.r.t. virtual waiting time.

Proof. Let W1,W2, . . . denote the waiting times related
to the future arrivals. One can associate the costs in two
equivalent ways for these arrivals until the end of the current
busy period (renewal point),

c̃1 , λE[

∫ Bz

0

Um(t) dt],

c̃2 , E[W1 + . . .+WNz ],

(18)

where Bz denotes the duration of the (remaining) busy pe-
riod (having a finite mean), and Nz the number of jobs ar-
riving during it. Due to the PASTA property, c̃1 = c̃2. The
first equation corresponds to the virtual waiting time based
holding cost c(z) = um multiplied by the arrival rate λ, and
the latter to the actually incurred waiting time. Then,

ṽ(z)− ṽ(0) = E[W1 + . . .+WNz ]− rW E[Bz]

= λE[

∫ Bz

0

(Um(t)− r) dt] = λ(v(z)− v(0)),

and thus (17) holds.
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Figure 4: Value function for M/D/2-RR with respect to the virtual waiting time.
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(with service rate c = 2).

Consider next the case with arbitrary job-specific holding
costs. Let (Xj , Hj) denote the size and the holding cost of
Job j that are assumed to be i.i.d., (Xj , Hj) ∼ (X,H), while
each Xj and Hj may still depend on each other. For exam-
ple, the slowdown metric, defined as the ratio of the delay
to the service time, is obtained with Hj = 1/Xj and Sj = 1
[20]. The difference in the cumulative costs is incurred by
later arriving jobs during their waiting time. Therefore:

Corollary 5. The value function w.r.t. general holding
costs (associated with the waiting time) for M/G/m-RR in
state z = ((q1, u1), . . . , (qm, um)) is

ṽ(z) = λ
∑
i

v(qi)(ui) E[H(qi)].

where E[H(k)] denotes the mean holding cost rate of a job in
Queue k. In case of identical holding cost rates,

ṽ(z) = λ v(z) E[H], (19)

2.6 Examples with Value Function
Next we give some numerical examples with the virtual

waiting time. The service fee is included to the cost structure
later in Section 3.

2.6.1 Comparison of Equivalent M/D/1 and M/D/2
With identical servers and constant service times, both

the Round-Robin and LWL are equivalent to M/D/m with
a shared queue. According to (16), the mean waiting time
can be obtained from the value functions, and we can com-
pare the performance of an M/D/2 queue with an equivalent
M/D/1 queue that is twice as fast (c = 2). Fig. 3 illustrates
the mean waiting time and sojourn time for both systems.
The mean waiting time with two servers is smaller than with
one fast server. However, the mean sojourn time is obviously
always shorter with one fast server.

2.6.2 M/D/2 w.r.t. Virtual Waiting Time
Consider next the virtual waiting time in M/D/2-RR.

Fig. 4 depicts the resulting value function v(z) = v1(u1) +
v2(u2) for the whole system (upper row) and its compo-
nents (lower row) for ρ = 0.2, 1.0, 1.8. For the upper row,
we have included also states with u2 > u1 and u1 > u2 + 1,
even though the normal state space3 of an initially empty
M/D/2-RR queue is the narrow strip constrained by 0 ≤
u2 ≤ u1 ≤ u2 + 1. That is, we allow an arbitrary initial
state. The value function becomes more symmetric as ρ in-
creases. From the lower row, we observe that initially, at
u = 0, the slope of each vi(u) is zero in accordance with (8).

2.6.3 Other Distributions
Let D(x1, x2) denote the discrete probability distribution

with two possible outcomes x1 and x2. We further as-

3Later, in Section 3, the so-called FPI policy may deviate
from RR and any state is in principle possible.
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Figure 5: Value function vi(u) for m = 2 phases
(i = 1,2) when service times obey D(0.5,10),
D(0.5,5), U(0,2) and D(1) with unit mean and
λ = 1.6. For both v1(u) and v2(u), service time dis-
tribution D(0.5,10) corresponds to the highest curve
and D(1) to the lowest (in the order of variability).

sume that x1 < 1 < x2 so that with a suitable choice
of point probabilities the mean is equal to one. Similarly,
D(x) denotes the deterministic distribution with one out-
come x and U(x1, x2) the uniform distribution on interval
(x1, x2). Fig. 5 illustrates the resulting value functions with
D(0.5, 10), D(0.5, 5), U(0, 2) and D(1). In each case, the
mean service time is 1 and arrival rate λ = 1.6. We can
observe that the higher the variance in the service times is,
the higher the initial difference v2(0) − v1(0) is. The v1(u)
behave rather similarly (note the initial choice v1(0) = 0).
Consequently, we have the following result:

Corollary 6. The value function for an Erl(m,λ)/G/1-
FCFS queue w.r.t. waiting time (or delay) is not insensitive
to the job size distribution (for m > 1).

Proof. See Fig. 5.

We note that this is in contrast to the M/G/1-FCFS queue,
which value function is insensitive to the job size distribution
[21]. This implies that the value function of the correspond-
ing Round-Robin system, due to the decomposition, is also
sensitive to the job size distribution, which again is not the
case if the routing is by any state-independent (static) policy
such as the random Bernoulli-split.

3. TASK ASSIGNMENT PROBLEM
In this section, we consider the system ofm parallel servers

with job- and server-specific service fees and holding costs.
As reference routing policies, we consider the following:

RR: Round-Robin assigns the jobs using a predefined se-
quence s1, s2, . . . , sm, s1, s2, . . . where si 6= sj for i 6= j.

RND: Bernoulli-split assigns jobs randomly and indepen-
dently using probabilities p1, . . . , pm.

JSQ: Join-the-shortest-queue assigns a new job to queue
with the least number of jobs.

LWL: Least-work-left assigns a new job to the queue with
the shortest backlog.

Myopic chooses the queue that minimizes the costs assum-
ing no other jobs arrive in future.

Ties are broken in favor of the queue with a smaller index.

3.1 Policy Iteration
The policy iteration is a standard technique of the MDP

framework to improve a given policy based on a value func-
tion [4, 19, 28]. In layman’s terms, at every state, it chooses
the action a for which the sum of the immediate cost and the
change in the future cumulative costs is the smallest. In our
case, the immediate cost of Job j is the sum of the service
fee saj and the waiting time waj times the holding cost haj ,

saj + waj · haj ,

where we have made it explicit that also the service fee and
holding cost may depend on the chosen queue, not just on
the job. Note also that with FCFS, the waiting time waj gets
fixed at the task assignment by action a (the later arriving
jobs do not affect the sojourn time of the present jobs). If
the basic policy is RR, then an action may define two things:

1. The queue for the new job.

2. The future RR sequence (the phases for queues).

Similarly, utilizing (19), the expected increase in the holding
costs incurred in the future is

ṽ(z⊕ a)− ṽ(z) = λ (v(z⊕ a)− v(z)) E[H],

where z is the current state of the system, z ⊕ a the state
after action a, and v(z) is the value function with respect to
the virtual waiting time. The improved policy α′ is then

α′(j, z) = argmin
a∈A

(
saj + waj h

a
j + (ṽ(z⊕ a)−ṽ(z))

)
, (20)

where A denotes the set of possible actions (the m servers).
We will utilize (20) in the next section.

3.2 Numerical Examples
Let us consider m = 2 equally fast servers. First we as-

sume a constant service time and then we experiment with
some other elementary service time distributions.

3.2.1 Two Policy Iteration Steps
As RR/LWL is optimal with respect to the mean delay for

M/D/m, let us consider a system with arbitrary job-specific
holding cost rates. Let h denote the holding cost rate of
the new job. If h > E[H], the intuition suggests that the
new job should be assigned to the shorter queue according
to RR/LWL. However, if h < E[H], it may be beneficial to
assign the new job to the longer queue, thus keeping the
other queue shorter for later arriving, possibly more impor-
tant, jobs. The potential pitfall is that no such “important”
job arrives and one of the servers is unnecessarily idle (which
never happens with RR/LWL). For the policy improvement,
it is more convenient to consider the waiting time based cost
structure and (20).

Let us start with the state-independent Bernoulli-split pol-
icy. With two identical servers, this policy assigns the new
job to Server 1 with probability of 0.5, and otherwise to
Server 2. The value function of the whole system is [21]

ṽRND(u1, u2) =
λ′ E[H]

2(1− ρ′) (u2
1 + u2

2),

where λ′ is the queue-specific arrival rate, λ′ = λ/2, and ρ′

the queue-specific load, ρ′ = λ/2 · ∆. The mean difference



Figure 6: States in the diagonal where SPI suggests
assigning the new Job j with holding cost hj to the
longer queue (assuming RR afterwards).

in the expected costs between assigning the new job with
holding cost h to Server 1 and Server 2 is

∆c = h(u1 − u2) + ṽRND(u1+∆, u2)− ṽRND(u1, u2+∆)

=

(
h+

λ∆ E[H]

2− λ∆

)
· (u1 − u2),

i.e., ∆c is negative when u1 < u2, and vice versa. This
means that the first policy iteration (FPI) step (20), choos-
ing the action with the lowest expected overall cost if the
consecutive decisions are according the basic policy (Bernoulli-
split), yields LWL. Moreover, we recall that LWL was equiv-
alent to RR with a constant service time ∆.

As the first policy iteration step yielded RR (that was
equivalent to LWL in this case), the value function of which
we can now compute, we can proceed further and carry out
the second policy iteration step (SPI),

RND
PI

=⇒ LWL
PI

=⇒ SPI.

Fig. 6 illustrates the regions in the state space where SPI
chooses the alternative action, i.e., assigns the new job to
the longer queue. The arrival rate λ was chosen to be 0.5.
We note that SPI changes the FPI policy (RR) only near the
diagonal where both queues have roughly equal amount of
unfinished work. Higher the holding cost h of the new job is,
higher the backlogs must be before the change, on average,
pays off. Jobs with h ≥ E[H] are categorically assigned to
the shorter queue.

3.2.2 Two Servers with Varying Service Fees
Let us next consider a server system with primary and

secondary server with fixed size jobs illustrated in Fig. 7.
The servers are equally fast, i.e., the service time of a job is
the same in both queues. The cost structure is

H = 1, and S1 = 1, S2 = 4,

i.e., the secondary server has a four times higher service fee.
Alternatively, the secondary server costs, say 3 dollars per
job, the primary server is free, and the jobs incur costs at the
rate of 1 dollar per unit time during their sojourn time. Note
that without service fees, LWL/RR are optimal minimizing
the mean waiting and sojourn times.

With two servers, both LWL and Myopic are clearly the
so-called switch-over policies that can be defined by a curve

FCFS

FCFS

κ = 1

κ = 4

Secondary

Primary
λ

Routing

Figure 7: Primary and secondary server with unit
holding cost H = 1 and service fees S1 = 1 and
S2 = 4 processing jobs with constant service time.
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Figure 8: Dynamic switch-over policies illustrated
for a system with a constant service time, and two
equally fast servers with service fees S1 = 1 and
S2 = 4. Each policy assigns a new job to Queue 1
when the current state is above the corresponding
curve, and otherwise to Queue 2.

f(u1) such that a new job is routed to Queue 2 if u2 < f(u1),
and otherwise to Queue 1. It turns out that also the FPI
policies based on RND and RR yield a switch-over policy.
Fig. 8 illustrates the switch-over curves for λ = 0.8. RNDopt

uses the optimal splitting probabilities, and RNDu splits the
jobs equally, p1 = p2 = 0.5. We note that the curves with
FPI-RND policies are straight lines, while with FPI-RR the
switch-over curve is a slowly turning curve. Simulating the
system gives the mean costs per job:

LWL: 2.20 FPI-RNDopt: 1.92
Myopic: 2.12 FPI-RNDu: 1.91

FPI-RR: 1.88

We observe that FPI-RR achieves the lowest mean cost rate,
closely followed by the other two FPI policies. Numerically
experimenting one can see that when λ approaches 2 (the
stability bound for this system), all FPI policies converge
to LWL. Similarly, when λ → 0, Myopic is optimal and all
three FPI policies reduce to it.

3.2.3 Varying Holding Cost and Service Times
Let us consider an elementary system comprising two iden-

tical servers. Jobs arrive according to the Poisson process
with rate λ. Job sizes and holding costs are i.i.d. random
variables. The job size is 1 with probability of 0.9, and oth-
erwise 91, so that E[X] = 10 and the variance much higher.4

4We experimented also with uniform distribution, but the
results were boring as the differences between RR, LWL,
and FPI-RR were small. In this respect, uniform distribu-
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Figure 9: Mean holding costs in the elementary ex-
ample setting with two identical servers. FPI-RR
achieves clearly the lowest cost rate.

The holding costs are assumed to obey exponential distri-
bution with unit mean, H ∼ Exp(1).

Simulation results are depicted in Fig. 9 for Bernoulli-split
(RND), JSQ, RR, FPI-RND (i.e., LWL) and FPI-RR. The
offered load ρ is on the x-axis, and the y-axis corresponds to
the mean costs incurred per job. The first figure shows the
absolute performance in logarithmic scale, and the second
the performance relative to LWL. Note that LWL minimizes
the holding cost of the current job, i.e., it makes the same
greedy decision as selfish users do.

When ρ ≈ 0, LWL and JSQ both, obviously, work well.
The task there is merely to avoid situations when two or
more jobs are in one server while the other server is idle. As
ρ increases beyond about 0.1, the performance of JSQ starts
to degrade. At ρ ≈ 0.4 or higher, also the performance of
LWL, due to its greedy behavior degrades. Around ρ = 0.9,
FPI-RR is about 25% better than LWL. As ρ → 1, JSQ,
LWL and FPI-RR appear to converge to the same point.
Indeed, at that limit the mean queue lengths explode and it
is sufficient to (dynamically) balance the load.

4. MORE ADVANCED APPLICATIONS
The ability to determine a value function for Erl/G/1

queues enables the analysis of far more complex server sys-
tems than the plain Round-Robin system. One example
is illustrated in Fig. 10(a), where a multi-layer RR is con-
structed: Queue 1 behaves according to Erl(2, λ)/G/1 and
Queues 2 and 3 according to Erl(4, λ)/G/1. This type of
arrangements can be advantageous when the service rates

tion is sufficiently close to a constant value. The chosen job
size distribution has sufficiently high variance so that it is
important to take into account jobs arriving in the future.
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Figure 10: (a) Multi-layer round-robin system feeds
tasks to each queue with Erlang-distributed inter-
arrival times. (b) In the hybrid system, Queue 1
behaves according to M/G/1 and Queues 2 and 3
according to Erl(2,λ′)/G/1 with reduced variance in
the service times.

and/or operating costs are asymmetric.
The main strength in RR comes from the fact that it

reduces the variability in the inter-arrival times (see Sec-
tion 2.4.5). On the other hand, a high variability in the job
sizes can be equally harmful (due to the second moment in
the Pollazcek-Khinchine formula for the mean waiting time).
The so-called Size-Interval-Task-Assignment (SITA) policy
[7, 16, 10, 17] seeks to reduces the variability in the job sizes
by assigning jobs with a similar size to the same queue. To
this end, the support of the job sizes is divided into m non-
overlapping intervals [ξi, ξi+1), i = 1, . . . ,m, and a job with
size x is assigned to Server i iff x ∈ [ξi, ξi+1).

Fig. 10(b) illustrates a server system which combines the
worthwhile features of SITA (variance reduction in service
times) and RR (which was the optimal policy w.r.t. delay
for tasks with a constant service time). The arrival pro-
cess to Queue 1 is a Poisson process as SITA is a state-
independent policy. Queues 2 and 3 behave according to
Erl(2, λ′)/G/1, where the service time of tasks can have
a significantly smaller variance thanks to SITA. Moreover,
dedicated jobs arriving according to some other Poisson pro-
cess can be directed to any point already receiving a Poisson
process, such as the Queue 1 and the second level RR dis-
patcher in Fig. 10(b). Thus, the analysis of systems that
hierarchically combine dispatchers remains tractable, their
value function can be determined, and the policy improve-
ment step can be carried out.

5. CONCLUSIONS
We have analyzed the Round-Robin (RR) routing to a

system of parallel queues. RR is a commonly used robust
technique to balance the load by assigning tasks to different
servers sequentially. It decreases the burstiness in the arrival
process to each queue, which is important especially when
the queues process the jobs in FCFS order.

The availability of the value function for RR-systems, via
the corresponding value function of Erl/G/1 queues, pro-
vides new insight to this mechanism itself (and to G/G/1



queues). The value functions that we considered character-
ize the system state with respect to the service fees and vir-
tual waiting time, and also enable the policy iteration step
with respect to a very versatile cost structure defined by job-
and server-specific service fees and holding costs, yielding ro-
bust cost- and state-aware routing policies. Moreover, as an
useful side-product, we obtain the mean waiting time in the
Round-Robin system, which itself is a non-trivial result even
for an M/D/m-RR queue.
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